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The purpose of this paper is to study the decomposition of automorphisms
of Cayley algebras into products of the simplest kind of automorphisms,
namely, the involutory automorphisms or automorphisms of period 2, When
the base field is algebrically closed of characteristic not 2 or 3, it is shown
that any automorphism is the product of two involutory automorphisms
(Th. 4). This result is not true for any field (Th. 3), but, if the characteristic
is not 2 or 3, then any automorphism can be expressed as the product of at
most 3 involutory automorphisms.

We take as a starting point N. Jacobson’s study [2]. T'he reader should refer
to it for the well-known results about Cayley algebras and their auto-
morphisms that we use. The properties of Cayley algebras can also be found
in {3].

1. A Cayley algebra C over a field F is a simple alternative algebra
of dimension 8, with an identity element 1 and an involution —, that is,
an antiautomorphism of period 2. For any x € C, x& = «l where « € F and
the function N(x) == o defines a nondegenerate quadratic form with the
property N(xy) = NN().

From now on we will always assume that char F 7= 2. So we define the
bilinear form associated to N by

(% 3) = (1/2)YN(x + 3} — N(x) — N(5)).

If the quadratic from has Witt index 0, then C is a division algebra. If the
index is not 0, then it is equal to 4 and C is called a split Cayley algebra.

A subalgebra Q of dimension 4 is called a quaternion subalgebra if it
contains 1 and the restriction of N to (¥ is nondegenerate, for ) is indeed a
generalized quaternion algebra.

An automorphism § of C defines a rotation with respect to the bilinear
form (#, ) and since it leaves ] invariant it induces a rotation on the subspace
C, = (F1)* the orthogonal complement of FI. If S® == 1, the identity
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mapping, but S 3£ 1, the elements Q = {x & C | 25 == &} form a quaternion
subaigebra, then C = Q & Q* and the orthogonal complement O == o2,
where z is any non-isotropic vector of Q. Conversely, if O is a quaternion
subalgebra the rotation which induces the identity mapping on Q and takes
the element of O+ into their negatives is an involutory automorphism of C.
We will denote this automorphism by (.

Turares 1. Let C be @ Cavley algebra. If S is an automorphism of C
which maps a quaternion subalgebra Q into itself, then S is the product of two
involutory automorphisms.

Proof. Write C =0 3@+ Since § induces an avtomorphism in Q,
it induces a rotation in %, Such a rotation can be decomposed into the
product of two involutons M, H, , where [, is the rotation of O which leaves
invariant the vectors of a non-degenerate plane (sec {5], Th. 2). Let #,, v;
be an orthogonal basis of this plane and let Q; be the quaternion subalgebra
spanned by 1, w,, v, ww . Since ww; € Q, §; agrees with i, on 0. Hence

§ == 0,0

COROLLARY 1. If an automorphism S of C leaves invarient a nondegenerate
plane of Cy, then it is the product of two involutory automorphisms,

Proof. If u,u, is an orthogonal basis of the invariant nondegenerate
plane

(1y14)S = (g SYupS) == (tyz0y + orypti)oigrtty - ctpgy)
== (o oty — oygy) Wty -

Therefore .5 leaves invariant the quaternion subalgebra spanned by
L, 2y, 1y, gty .

Since any orthogonal transformation of an anisotropic space of dimension
n 2z 2 over a real closed field leaves invariant a plane, we have proved

CoroLLary 2, If Cis @ Cayley division algebra over a real closed field,
any automerphism of C is the product of two involutory automorphisms,

2. To deal with split Cayley algebras we find it useful to work with
standard bases, For the convenience of the reader we proceed to obtain one.
First, let us recall that if a; , @, are two orthogonal non-isotropic vectars in C,
and a, € O, where Q is the quaternion subalgebra spanned by 1, a; , a, , @14, ,

then (@ ay)a, = —a,(a,a;).
Let 2 be a vector in Cy such that N(z) = —1, that is, such that (1 — 2)

and ¥{I -} 2} are idempotents. If o, is any non-isatropic vector of € ortho-
gonal 1o z, the subspace spanned by |, #, v, v;7 is a split quaternion sub-

AUTOMORPHISMS OF CAVLEY ALGEBRAS 443
algebra Q and the vectors wy == v - o2 and @, = vy — vx are isotropic
and the product wyw, = —2N(z)(1 — 2.

Let now o, be any non-isotropic vector in 0° and @, == 2e,2, . Then
Zyug,wy, == 1,2,3, is a basis of Gy, where u; = v, -4 vz, w, = v, — 0,2
are isotropic vectors and {u,, w,) == --28,;N(z;), §; being the Kronecker
delta, Now, if 7 = 5,

wa; == (o ) - 0,2) = v, — 2vw)s.

Choosing  N(v;) == N(v,) == 1/4, which is always possible, we get

200y == dog{ogws) = vy, 2ugny == 4(vy0,) By = v, . Therefore
Wity = 1wy, if (i, j.’ k) is an even permutatio.n of (1,2,3) )
-y if (4, J, k) is an odd permutation of (1, 2, 3).
Changing s into —=z, we see that
waw; == sig (7, 7, kY u, (23
where sig (7, /, k) is the signature of the permutation (, j, k).
Moreover,
weo; = —485,{1 — 2} and wi; = —48,(1 + 2) (3)
Ux = U; and wpy == —y, . (4

That is, %, , 4y, 2,, span the 3 dimensional space of C, consisting of
vectors annihilated by left multiplication by the indempatent }I — ).
Similarly, [, , 20, , 2], the subspace spanned by o, , @, , 7, , is the subspace
of Cy annihilate by right multiplication by (1 — z).Hence these subspaces ave
uniquely determined by 2.

Now (u; , w;) == ~38,;, and forany we [uy, u,, ;] and any w e [, , w,, w,],
uw == (u, w){1 — %) and wu = (u, w)(1 -+ 2).

Notice that the subspace [, u; - @y, uy -+ w0y, 45 + w,] = Z is a quater-
nion subalgebra, The automorphism Z takes 5 into —z, #; into @, , and @,
into ;.

If an automorphism § of the split Cayley algebra € leaves invariant the
vector & it must induce Hnear transformations in iy , #y , #,] and [ee, , @y , 7,).
So let

upS == Do and wpS = XB ;. (5

Since .S induces an orthogonal transforination on the subspace spanned by
the u; , w;, 7 =1, 2, 3, we must have that the matrix

(Big) == (o)™ (0)

where (w,;)t denotes the transpose of (a;;).
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On the other hand (u,5)(w;S) == sig (4, j, k,} w,S shows that B;; is the
cofactor A;; of a; in {wy). But from (6) we know that

ﬁi?’ = A-"j(det (fxij))—l-

Hence det () == . Now it is immediately seen that if det{ay) == 1,

an automorphism of C.
Any automorphism T of € which takes z into -z is of the form SZ.
Thercfore

w, T = Doy, w T = LB,

where the matrices (ay;) and (B;;) are unimodular and satisfy {6). Moreover
such automorphism will be involutory if and only if («;)(8.;) = I, the identity
matrix. Because of (6) this holds if and only if () is symmetric,

It is well-known that given a matrix 4 there exists a symmetric matrix S
such that SAS-! == 4% Then A4St = §-1A! = (A5t is also symmetric,
hence 4 = (4S5-%}S is the produet of two symmetric matrices. Conversly, if
A= 515,858,585, symmetric, then A' = 8,5, = S,45;*. When the
minimum polynomial of 4 equals the characteristic polynomial, any other
matrix B such that BAB-! = Atis of the form B == Sp(4), where p(Ad) is
a polynomial in A, and any such B is symmetric (sec [4]).

If T'is an automorphism of C, such that 27" = 2, u;T == Za,u,; and we
can decompose 4 = (a;;) into the product of two unimodular symmetric
matrices, say A == 8.5, , where Sy == (s,), then if J;, j == 1,2, are the
involutory automorphisms defined by #0; == —z and w,(J; = I}, and
w; 0y = e, , weget T = 0,0, .

Treorem 2. Let C be a Cayley algebra over a field K in which every
element lras a cubic root. Then any automorphism T of C which leaves invariant
a vector z € Cy such that N(2) == 1, is the product of two involutory auto-
morphisms.

Proof, We have just seen that if 4,7 == Zw,n; , we only need to find two
unimodular symmetric matrices Sy, S, satisfying $,5, = (o). We know
that there always exist two symmetric matrices S;, S; whose product
518, == (w;;). Since they are nonsingular and in K cvery clement has a cubic
root, we take S == a5, S, == «"1S,, where ac K satisfies the condition

o® = (det §,)1.

Supposc that K = O(w) is the quadratic extension of the field of rationa!
numhers Q by a complex cubic root w of [, Let 4 be a 3 % 3 matrix whose
minimum polynomial is (¥ — w)® Suppose 4 = 5,5,, the product
of two unimodular symmetric matrices, then let B = CAC-!, where
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We have recalled above that any other symmetric matrix appearing as the
second factor in such decomposition is of the form C-15,C-'p(B). Now
det p(B) == p{w}?, hence if ¥ — o? i an irreducible polynomial B is not the
product of two wwmodular symmetric matrices. The same argument can be
applied to a finite ficld F containing a root of &? - & 4~ 1, since in this case
we also have clements a & F such that &® — a? is an irreducible polynomial in

THEOREM 3. For some fields K there exist automorphisms of the split
Cayley algebra over K which can not be expressed as the product of two invol-
utory antomorphisms.

Proof. Let K be a field which contains matrices B == (fi;;) as above, that
is, have minimum polynomial (x — w)?® and are not expressible as the product
of two unimodular symmetric matrices. Let T be an automorphism such that
2T = 2, w4, T = ZB,u; . Then [z] is the subspace of €, consisting of vectors
invariant under 7. If T = @,0, any vector in 0+ N O,* is invariant under 7.
Since dim Qf = 4 and O+ C C, of dimension 7, we have Oy N Oyt # 0,
therefore Q;* M Oy == [#]. But then the automorphisms ; must take z
into —z and we have just seen that this, being equivalent to decomposing B
into the product of two unimodular symmetric matrices, is impossible.

3. Let us recall now some properties of the orthogonal trans-
formations of a vector space I/ relative to a nongenerate symmetric bilinear
form in char %= 2. If ¢(x) is the characteristic polynomial of an orthogonal
transformation, then any root of ¢(x) appears with the same multiplicity that
its inverse, hence ¢{x) == Jzx®e(x~1}. In [5] departing slightly from the classical
terminology we have called such polynomials self-reciprocal. We can
factorize ¢(x) in the form

ox) = (o — 1Y (% -+ 1 pyla)™ - pala)

where p(1) 3£ 0 5% p(—1), the pix) arc distinct and irreducible self-
reciprocal in the sense that they are seif-reciprocal and can not be cxpressed
as the product of two self-reciprocal polynomials. Then the p{«) are pairwise
coprime and have even degree,

The direct sum decomposition of the vector space into invariant subspaces
V=V, @V_®V,® - &V, where the characteristic pelynomial of
the restriction of the transformation to ¥, V., I, is 2 power of x -+ I,
a — 1, px) respectively, is an orthogonal direct sum {cf. [5], Coroliary to
Prop.) If the transformation is a rotation #’ is even,

In our case, if S'is an automorphism of a Cayley algebra, the restriction of §
to C'g is a rotation and therefore 7 = 1, 3, 5 or 7,
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We want to study the automorphisms S with the property that the charac-
teristic polynomial of the restriction of .S to Cy has 1 as a multiple root, We
have then three possibilities, namely, # == 3,5, 7. By studying each one
of these cases we are going to establish the following theorem.

Turonem 4. Let K be any fleld of char 4 2, 3. If S is an awtomorphism
of a Cayley algebra over K, such that the characieristic polynomial of the vestric-
tion of S io Cy ds divisible by (x — 1), then S is the product of two tnvolutory
antomorphisms,

Case 1. 7 == 3. Then the subspace ¥ is a nondegenerate 3 dimensional
space. The invariant factors of the restriction of .S to I, must have one of
the following forms,

(@) 2 —1l,a—1,2—1
) (x— 1% x—1
() (x — 17
If ("Q holds V. censist of invariant vectors and by Corollary | to Theorem 1,
S == (0,
(b} is impossible, because then S induces in ¥, a rotation which ieaves

invariant every vector of a hyperplane, hence it must be the identity (see [1],

Th. 3.17).

Assume then that (v — 1)% is the minimum plynomial. Then we will show
that the subspace K.1 @& V¥, is a quaternion subalgebra, thercfore by Th. [
S =00,

Choosing an appropriate basis in ¥ we have

uS == u, 28 = 2 4 au, oS == o 4 Bz - yu

where # and © form a hyperbolic pair and Kz is the orthogonal complement

in ¥V, of [u, v] (sec {I], p. 133).

{uv)S = u(v + Be + yu) = uv + fuz,
that is, (22} S — 12 = 0; therefore vv € K.1 4- IV, . Finally
(20)8 = (2 -+ au)(v + Pz + vu) = 20 b anw -} B2 4 (o — ¥) vz,

which implies that (z2)(.S — 1)® = 0. Hence zv € K1 @ V, and this subspace
is a quaternion subalgebra.

Case 2. r = 5. Then the orthogonal complement in Cy of ¥ is a non-
degenerate invariant plane, thus by Cor. I to Th. 1, S = 0,0,. A closer
study will show that this case can nof appear,
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Case 3. » == 7. To dispose of this case we are going to divide it into two
subcases.

(a) (x — 1) is the minimum polynomial of the restriction of 5 to Cy

(b) (» - 1)7 is not the minimum polynomial.

Let us take subcase (a). Notice first that the subspace of invariant vectors
of C, has dimension { and must be isotropic. We may assume that )5 == u, ,
where 2, belongs to a standard basis.

If u,, denotes the lincar transformation of C, wy, 1y — ¥, , we sec that
its kernel is [uy, wy, w0y, 1 — 2] and Kerwy, 0 Cy = [w, w;, wy]. Since
;S == u; , these subspaces arc invariant under S, therefore [y, w,, 0]
and [y, %, , %, , 2] are the kernels of the transformations (5 — 1)* and
(S — 1} restricted to Cy .

We want to take a standard basis adapted to our transformation. For this
purpose let 2w, be any element of Ker (8 — 1)® not in Ker (S — 1)? and write
wyS == wh 40, wyS == wy -+ . Then #'S = &' and wyey = o’ 7= 0. We
define a new basis where w, = o~lwy, wy == a~'wy, # == « . Then
oyt = 1ty and w4y S = uy , w0y S = wy -y, wyS = wy - wy

We can choose now our 2 € Ker (§ — 1)1 Cyin such a way that w2z = u ,
w2 == e, and complete w4 , 2y, 2y, ¥ to a standard basis.

Since S is an automorphism we have

(1, 8)(#S) = 2,5, (0, S)(=S) = —,S, (0,8 (2S) = —wyS

which give
28 = g — 2wy — 2w, 4 281,

In the same way we can find, in the order given below

uyS = 1y — 2 - wy - (1 4 8wy iy

S == gty e Uy - B0y — S, | vy

WS = wy - Uy ftly — & — (A Swy — (4 & 4 vy - (v 8y
= (,5)(1135)

Now if we try to decompose S into 0,0, we know that [1] = Oy N Ouh
hence w{J; = —w. An automorphism which takes » into ~u must leave
invariant the subspaces [, e, , 2] and [w, w, , @, , ], Hence the restriction
of (J, to [y , w, , ;] relative to this basis has a matrix of the form

-1 0 0
A = « B v with A% =
G:f ﬁf }J’
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Moreover, the equation wym, = u, gives

(oaty + flwg 4 yrg)(o'uy + flwy - y'wg) = -y
which implies By’ ~ v’ = 1, Hence A must have the characteristic rcots
—i, =1, L.
So we try the following matrix of square equal 1
-1 0 0
A = a 1 0
af
7 #-l

, should also be an involution we know that

w
=
O
[
Lo
e’
™
{
S o Dy

T 0 -1 0 0 —1 0 0
1 1 a1 0} | a—1 1 0
of T 20 - of
0 1 1 5 g —I T B+1 3
must have squarc equal Z. Hence 8 == —(1 4 a).

We are going to find first all the automorphisms 7°of € whose restriction to
[z, , 2y, wy] relative to this basis is given by the matrix 4 with § = —(1 + ).
That is,

T = —uy wo ' == W, - any ,

wy T = wy — (I - &) wy — dall - aduy

As before we can find 270 then w7, then v, 7 and finally ey T == (#, T)(1, T').
We obtain

2T == 2 — 2amwy — ol + &) wy -+ Dy
U T == —1y - w7 — oy — (D 4+ o] - o)) w, + Buy
. 1 1
W, T o= ny — (1 + ) uy -+ 3 ol +a)z — 5 (D - (1 + o)) 2,

oo
4

2D + o1 4 ) + yig

Now we want to sce for which values of D, f, v, this T is an involutory auto-
morphisin, We get ®T? w= x for x ==, , w, , %y, % and
1, T? = 4y + (SeD — 2B) uy .
Hence

p = tal (7)

and with this value of § we find u,T% == u, .
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Since o and I can be arbitrary, we want, if possible, to choose them so that
ST = T is also an involutory automorphism.

We already know that w7 = —uy, @,T = w, 4 (« — )y and
wy T = —uwy — oy, — da(e — 1) %, and by direct computation we find

gl w3 — e — 1wy — afe — 1y w, + (afle — 1} -+ D — 281,
w7 = —uy 4+ (a — 1}z — {0 — 200 + 1) ey
— 3D ~- 28 - @ - Wy b oD 4D — dp 4 20 2a* - 4oy

Since this is an automorphism of the same form that 7" with « replaced by
a— 1, Dby afe — 1) 4 D — 25, and Bby oD - 4D — dp - 200 — 26> - 4ad
it will be involutory if the equivalent of condition (7) holds. So we obtain

¥ g — O0d F 28 - 3D 44 =0
Hence if the characteristic of the basic field is not 3 we can take
D = —}(e® — o — 68 4 28 + 4p)

and when the characteristic is 3 we get the relation of — o + 28 + & =0
which may not have a solution if the field is not algebraically closed.

So we have shown that if (a) holds the automorphism § == 0,0, when the
characteristic is not threc.

In order to discuss subcasc {b) we wili first prove the following.

Lena,  If (v — 1)7 is the characterisiic polynomial of the automorphism S,
but not its minimum polynomial, then S either leaves invariant a quaternion
subalpebra or there exists two lnearly independent isotropic vectors w and w

Proof. If there exists an invariant non-degenerate plane in Cy we already
know that there exists an invariant quaternion subalgebra and therefore
S = (0,0, . On the other hand since (x — 1)7 is not the minimum polynomial
there exist at least two linearly independent invariant vectors,

Suppose then that the plane spanned by these two vectors is degencrate,
If the radical of the restriction of the bilinear form to this plane has
dimension ], there exists an orthogonal basis %, 2 such that N(u) == 0,
N(z) £ 0. Then if uz ¢ [}, the vectors », uz satisfy the conditions. Should
ux = ou, then w70 and w2® == (uz)z = o®u, so 2% a®] and
N(a'5) == —]1. Hence S leaves invariant a vector of norm —1 and the
restriction of S to the subspace U = {a & Cy | a{or =) == x} has | as a charac-
teristic root since x € U, and we know that the same is true of the restriction
of § to V = {xe Cy|x(a~t2) == —x}. Let & ¥ such that »8 == v, since
ww = (1, v)(1 — alz) if (u, v) 7 0, the vectors |, #, v,  span an invariant
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quaternion subalgebra and if (#, v) == 0, the pair #, v satisfies the condition
stated in the lemma.

If the invariant plane is totally isotrapic, let &, © be a basis, Then if v == 0
we are done and if wv = 0, the pair #, #o satisfies the requirements. This
completes the proof of the lemma.

So it remains to show that if S leaves invariant two linearly independent
isotropie vectors whose product is 0, S is the product of two involutory
automorphisms, Such two vectors can be taken as the #, and =, of an appro-
priate standard basis, and the most general automorphism leaving these two
vectors invariant is of the following form

14,8 = Uy, 0,8 == 1y, wyS == wy - awy + By
28 ==z 4 28w, -+ 2uu; #yS = wy - petey - vy
S ==ty ~ ity -f PBr o prvy A (B2 — ) wy -+ Sy '

w8 = wy — fuy - px -y, — (8 oy~ Bu)w, + (1KF — By) 1
One also finds that the most general automorphism which takes »; and =,
into their negatives is the following,
0, T = —u, we T = —ty
wyl = 105 4 Aw,y - Buy
2T == z -+ 28w, + 2Mu,
1, T = 1y - Maw, 4 Ciuy
w, I = —uy 4 Awy - B, 4 Maey + (AM — B%) wy - Duy
w1 == (T Y1y T)
This automorphism 1" is involutory if and only if
AC — MB — 20 =0 {8)
Hence we can take any A4, B, C and M, then [ {s determined by (8).
As for the automorphism 77 = ST we get

‘

2
w, T s qwy - (A o)y + (B — fyuy
2T e g AB — B w, -+ UM — p) 1y
ug T = 2ty 4+ (M — )y -+ (C — 9) uy ‘:
1w, T = g b (A — )y — (B — By - (M ) 20y
(A )M - p) — (B =),
A (D — 8 e aC - 2BM — pB)uy

w, T = —uy w, " = —u
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Therefore T will be involutory if
(4 = a)C — ) = (M — p)(B — ) — 2D — & — aC + M — uB) == 0
If 7"is involutory, that is, if (8) holds, this reduces to
alC — yd + 3uB — 38M - oy — puf + 28 == 0

When char K £ 3 we can find values of 4, B, C and M satisfying this
equation unless o == ¢ == g == § == ) and § 35 0. But in the latter case the
guaternion suhalgebra [1, uy, @, , 2] is invariant under S. So in subcase (b)
it is also true that S = 0,0, and the theorem is proved.

4, Let K he an algebraically closed field of characteristic 7= 2, 3.
Then if the hypothesis of Theorem 4 does not hold for an automorphism .5,
the subspace of C; consisting of invariant vectors has dimension one and is
nondegencrate, hence it contains a vector of norm —1 and we can apply
Theorem 2. So our results give the following,

THEOREM 4. Let C be a Cayley algebra over an algebraically closed field
of characteristic 3= 2, 3. Then any automorplism of C is the product of two
tnoolutory autemorplismns.

We have already seen that if we do not impose any conditions on the field
the result does not held. IFor the general casc the best result is given by

Tueorem 5. Let C be a Cayley algebra over a field of characterisiic 72, 3.
Awny automorphism of C can be expressed as the product of at most three involutory
aytonorphisms.

FProof. If the hypothesis of Theorem 3 does not hold, let v be an invariant
non-isotropic vector in Cy. Let ¢ be non-isotropic and orthogonal to o,
Take ¢’ non-isotropic an orthogonal to [1, », ¢, 2], Then Qg == [1, ¢, &, 1}
is a quaternion subalgebra which defines an automorphism which takes v
into —w and induces a reflection on the subspace {I, v]*. Since the auto-
morphism SQ, induces a reflection in this subspace it leaves invariant a
nonzero vecter ' & [1, o]+ If ¢ is non-isotropic then S, = (0,0, , because
it leaves invariant the quaternion subalgebra [1, o, v/, o'}, Should z’ be
isotropic, then S, satisfies the hypothesis of Thcorem 3, so we get again
SOy == 010, , that is, § = 00,0, .
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