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In the present note we study conditions under which two non-degenerate
symmetric bilinear forms can be simultaneously diagonalized (see Theorem
1 below). Then we consider the possibility of having degenerate symmetric
bilinear forms and apply our findings to the case in which the base field is
real-closed and the forms do not vanish simultaneously. We obtain in this way
a purely algebraic proof of a result of Milnor (Theorem 2). For non-algebraic
proofs of this theorem the reader is referred to [2, 158~163] and [1]. These proofs
assume that the base field is the real field and the validity of the results for any
real-closed field follows from Tarski principle. The algebraic proof avoids the
use of this principle,

1. Let M be a finite dimensional vector space with two non-degenerate sym-
metric bilinear forms (z, y), and (z, y). . Assume that both forms can be simul-
taneously diagonalized, that is, there exists a basis of M, z,, 2z, *++, z,, such
that the matrix of the form (z, y); with respect to this basis has diagonal form
for 7 = 1, 2. If for any subset S of M we denote by [S] the subspace spanned by
the element of S, we can write

M=z]DlD - Dl

and this is a decomposition of M in orthogonal subspaces.

Let M* be the dual of M and let {(y*, z) be the value of y* ¢ M* at z. Now, if
¢; 18 the bijective mapping of M into its dual defined by {(y¢; , ) = (¥, z); , we
get 2000, = ax; , if x; is one of the elements of the basis given above. This
says that the vectors z; , ¢ = 1, 2, --- , m, are characteristic vectors of the
linear automorphism of Mee;".

Theorem 1. Let M be a finite dimenstonal vector space with two non-degenerale
bilinear forms (z, y), and (z, ¥)» . Then, if the base field has characteristic 2,
the two forms can be simultaneously diagonalized if and only tf M has a basts
consisting of characteristic vectors of the linear automorphism o7,

Proof. We have already seen the necessity of the condition. To prove its
617

Journal of Mathematics and Mechanics, Vol. 15, No. 4 (1966).



618 M. J. WONENBURGER

sufficiency, let us write

M=M1®Mz®"’®Mr,

where the M; ,j = 1,2, --- , r, are the characteristic subspaces corresponding
to the distinet characteristic roots «; . Since ¢;¢;" is an automorphism «; =+ 0,
j=1,2 ---,r. We are going to show now that this is a sum of orthogonal
subspaces with respect to both forms. Thus, let y, e M, and 2, € M, , then

(y;. ) = <yh¢1 ’ Zk) = (yhsﬂﬂﬂz_l: 2 = 08;.(?/1- 2z .
Similarly

(zk yyh)l = ak(zk 3 yh)2 ’

and since the forms are symmetric we get

oe;.(y;. ) Z)g = ak(y;. V22

Hence, if b = k, (y», 2:). = 0and (ys,2:), = 0. When h =k we get (5, 2,), =
au(Yn , 24)2 and therefore any orthogonal basis of M, with respect to one form is
also an orthogonal basis relative to the other. It is well-known that if the charac-
teristic of the base field is #+2 any symmetric bilinear form has an orthogonal
basis, so the theorem is proved.

2. We drop now the assumption that the forms are non-degenerate but we
still assume that they can be simultaneously diagonalized. So, let z; , 25, - -+ , @,
be an orthogonal basis with respect to both forms. By reordering the indices
we can assume that

iy (@i, 2= (2,2 =0"fori <7,

(i) @i, 2zh =0, @, 2),=0forr <77+,

(i) @i,z +0, (&, %), =0forr+s <7 <r+ s+
Gv) (@i, 2 =0, (T, )2 = 0fore >r + s+ ¢

Then
M=M,®M,PMPM,,
where
My = [, -+, 2], Moy = [Zrsr, * 0 ) Zossl,
Mio = [rserr s 0 ) Topane], 80D My = [Zrvgrinn , oo, Tal,

is a decomposition of M as sum of orthogonal subspaces. The radical of the
first form is

R, = {ysM[(y,M)l = 0} = Mo D Mo ,

the radical of the second form R, = M, @ M,,. Hence the complement of
B, M B, = M, in R; is non-degenerate relative to the form (z, y); , § + 4,
1 = 1, 2. So we have the following criterion.
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If two symmetric bilinear forms can be simultaneously diagonalized, then the
intersection B, M R, of the radicals of the two forms has a complement in R, (R.)
which is non-degenerate relative to (z, y):((x, ¥)1).

Now if we assume that this condition is satisfied by two given symmetric
forms, we decompose M as follows. First, we find My = R, M R, and let M’
be any complement of M, in M; then

M = Moo@M,,

is a sum of orthogonal subspaces relative to both forms. Take My, = M' N R, ,
then since My C R, , My is a complement of My, in B, and by assumption
M, is non-degenerate relative to the second form, so that M’ = M, @ M",
where M’ is the orthogonal complement of My, in M’ with respect to (z, y). .
Similarly, take M,, = M’ M R, ; this is a complement of M, in B, since the
radical of the orthogonal sum

M = MOO@MOI @M”’

is the direct sum of the radicals of the summands. Now we know by assumption
that M, is non-degenerate relative to the first form so we can find an orthogonal
complement M, of My, in M" relative to (z, ¥); . In this way we have ob-
tained a decomposition

M=M00®Mo1®Mlo®Mu ’

into orthogonal subspaces. It is obvious that if the characteristic of the base
field is =*2 the first three subspaces of the right hand can be simultaneously
diagonalized and that the restrictions of both forms to M, are non-degenerate.
Therefore, to diagonalize simultaneously both forms it is enough to find a basis
of My, which is orthogonal relative to both forms. So we take the restriction of
these forms to M, and define ¢,¢;"' as in section 1.

Let us remark that if N is a subspace of M, , invariant under o,0;", then N
has the same orthogonal complement relative to both forms. For, if

N* = {ze M, | (N, z), = 0},
then for any z ¢ N,
0= (2 N"): = (e , N**) = (2pr02", N7)s .
Since ¢y0;" is an automorphism, Ne,;* = N, therefore
NJ.; C NJ.n’
but
dim N** = dim M,, — dim N = dim N**,
S0
N** = N*»,
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3. Let us consider now the situation in the case that both forms do not vanish
simultaneously for any vector z = 0, that is, if « = 0, (z, 2), = 0
implies (z, ), = 0. Then if R, is the radical of M relative to (z, y). , B, does not
contain isotropic vectors relative to (z, y), ; in other words (x, z), #+ 0 for
0 = = £ R, , and consequently R, is non-degenerate relative to the restriction
of the second form. Therefore,

RRNR,=0 and M =R, ®R, D M,,,

that is My, = 0, My = R, , and M,, = R, . Moreover, in the present case, the
linear automorphism of M,,¢0;" is completely reducible. For, if N is an in-
variant subspace of ¢,¢; ", we know that

N.Lx — N.Lg’
80
re N NN,
implies (z, 2); = 0 = (&, ), hence 2 = 0. Therefore,
M, = N@PN*,
and
N*,
is invariant since for any
y € N_Lx — N.Ln,
we have
0= (y, N): = {yer , N) = enes', N
which implies
Youps & N2,
Thus, any invariant subspace of ¢;¢,* has an invariant complement.

Theorem 2. Let M be a finite dimension vector space over a real closed field.
Let (z, y), and (z, y)s be two symmetric bilinear forms on M which do not vanish
stmultaneously. Then, ¢f dim M > 2, the two forms can be simultaneously di-
agonalized.

Proof. We have just seen that if we take an invariant subspace N of My,
relative to the linear automorphism ¢.¢;*, then we can find an orthogonal
decomposition

Mu = N@N‘Ll-

Now any irreducible polynomial with coeflicient in a real closed field has degree
1 or 2, therefore we can find an orthogonal decomposition of M, into subspaces
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of dimension 1 and 2. To complete the proof we have to show that if dim M > 2
the existence of an irreducible factor of degree 2 in the characteristic poly-
nomial of ¢,¢;* is inconsistent with the assumption that the two forms do not
vanish simultaneously.

Let us take a 2 dimensional space P with 2 non-degenerate symmetric bi-
linear forms which cannot be simultaneously diagonalized and do not vanish
simultaneously. This implies that neither form can be definite, So, let z, y be a
basis such that the matrices of the bilinear forms relative to this basis are

10 8 v
Since the forms do not vanish simultaneously a + 0 and v = 0. Take a vector
x -+ 6y with § == 0. Then

[z + oy]"* = [z — oy] and [z 4+ 8y = [B + vz — (@ + B)y].
Now

[z + dyl™ = [z + oy]*,
implies that
v+ oy, x4yl
is an orthogonal basis of P relative to both forms. Since we assume that there
are not such bases, the vectors z — 6y and (8 + &y)z — (« + 88)y must be
linearly independent for all § = 0; therefore the equation in §
o+ 88 = 88 + ov),
that is,
a = &,
has no solution in the real closed field, hence « and v have different signs.
If dim M > 2, let 2’ be any non-zero vector in P*. Then either (¢/, 2’); = 0
or (2, 2"), = 0. We can assume without loss of generality that
(', 2’), = 0 and taking —(z, y), , if necessary, we can also assume that

(', 2) > 0, so that (z, 2), = 2 for a suitable scalar multiple z = uz’. Now for
any & = 0,

(¢+ 0z — 6'y,z2+ 6o — §'y), =0, and
¢+ 6z — 67y, 2+ 6 — 6 Y. = (2,2) + & + 5% — 28.
But the equation in §

a+ (2,2) — 28+ 6% =0,
that is,

d'a + (2,2 — 288" +v = 0,
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has a non-gero solution in a real closed field since @ and v have different signs.
On the other hand, if & = 0 satisfies the equation, then

4+ o2z — 8'y,z2+ 6z — 8y, =0 for ¢=1,2,

but this is a non-zero vector, which contradicts the assumption that the forms
do not vanish simultaneously. Hence, if dim M > 2 the minimum polynomial
of ;7' is a product of linear factors and, consequently, M,, has a basis of
characteristic vectors which gives an orthogonal basis relative to both forms.
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