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We are going to give a necessary and sufficient condition for a linear trans-
formation of a finite dimensional vector space M over a field F to be
the product of two involutions. It will always be assumed in this paper that
the characteristic of F = 2. When we have a non-degenerate symmetric bilinear
form over M, we will see that the orthogonal transformations satisfy the condi-
tion and the two involutions can be chosen to be orthogonal involutions. In
the case of a non-degenerate skew-symmetric bilinear form the condition is
also satisfied by the sympletic transformations but in the decomposition the
involutions are not sympletic transformations but skew-sympletic according
to the definition given below.

We assume that the reader is familiar with the theory of invariant factors,
similarity of transformations and bilinear forms. Some of the relevant defini-
tions and concepts will be recalled in the sequel, but the reader who wants a
more thorough information may consult [2] specially chapters III and V, or [3].

1. It will be convenient to recall first some properties of polynomials with
coefficients in the field F and introduce some definitions.

We will say that the polynomial #(z) is the reciprocal of the polynomial p(x)
if (x) is monic, that is, its leading coefficient is 1, and its roots are the inverses
of the roots of p(x) with the corresponding multiplicities. It is clear then that
g polynomial p(z) has a reciprocal if and only if its roots are different from zero,
that is, p(0) # 0. When deg p(z) = m, #(z) = p(0)'z"p(1/z) and p(z) = p(z)
if p(z) is monic. A monic polynomial will be called self-reciprocal if p(z) = P(x);
then p(0) = 1.

‘When the monic polynomial p(x) is self-reciprocal, if & #+ 0 is a root of p(z)
of multiplicity k, «™" is also a root of multiplicity A. Thus we can write

) p() = r@@ + '@ ~ 1,
where r(z) is a polynomial of even degree 2m, such that 7(1) += 0, 7(—1) *= 0
and
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2m
r@) = Y ax’
=0
with a; = agpm—; and a,, = 1. In general we will call a monic polynomial g(z)
of degree n symmetric if g(z) = D> _.» a;z° with a; = a,_;. It is clear that any
symmetric polynomial is self-reciprocal.

Any moniec irreducible polynomial g(z) of the ring F[z] is either self-reciprocal
or it can not contain as roots an element ¢ =+ 0 and its inverse, for the monic
greatest common divisor of g(z) and §(z) must be either g(z) or 1. Let p(x)
be a reciprocal polynomial and

t

H g:(x H

iml
its decomposition in powers of distinct irreducible polynomials. Assume that
for 1 <1 £, g:(z) is self-reciprocal and that for ¢ > f, §rres-1(Z) = gr42.(2),
so that we must have h;y5,-1 = hsis,. Denoting by r;(z) the self-reciprocal
polynomial ¢;(z) and by r,..(z) the self-reciprocal polynomial g ,z,—1(Z)g,+2.(Z)
we have

© p@ = [Ire".

The expression (2) will be called the decomposition of p(z) in irreducible
self-reciprocal factors.

2. Let M be a finite dimensional vector space over the field F. It is well-known
that any involution H, that is, a linear transformation whose square equals
the identity, defines and it is defined by a decomposition of M in a direct sum
of two subspaces M = M* @ M ™, where M* = {reM | zH = 2z} and M~ =
{x e M | zH = —z}. If a linear transformation L = H,H,, where H, and H,
are involutions, then L™ = H,H, = H,LH,, that is, L is an invertible linear
transformation which is similar to its inverse. We will show presently that the
converse is also true.

A subspace M, of the vector space M is invariant with respect to the linear
transformation L if M,L C M, where M,L == {ue M | u = vL for some v ¢ M.
Let M = M\ M, P --- @ M, be a decomposition of M in direct sum of
subspaces invariant with respect to L, then we will denote by L, the restriction
of L to M, and will write L = L, @ L, @ --- @ L,. In general, given a de-
composition M = >, @ M, we will denote by U = Y @ U, the linear trans-
formation of M whose restriction to M; coincides with U; . Clearly, if V =
S PV, then UV = >, PUYV,.

We recall also that a subspace N of dimension n, invariant with respect to
the transformation L, is called cyclic if there exists an element « such that w,
uL, uLl?® --- , uL™" is a basis of N. We say that u generates N. When M is
cyclic we say that L is a eyclic linear transformation.
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Theorem 1. Let M be a finite dimensional vector space and L a linear trans-
formation of M into tself. Then L s the product of two involutions if and only
if L 1s invertible and stmilar to L™,

Proof. We have just remarked that the condition is necessary. To prove
that it is sufficient we must remember that if §,(z), 8.(x), --- , &(x) are the
the invariant factors of L the invariant factors of L' are their reciprocals
8,(x), -+, 8.(x) (sce e.g. [3, Section 65)). Now if L™" is similar to L both trans-
formations must have the same invariant factors, therefore every &;(z) is
self-reciprocal. Let us decompose M in direct sum of subspaces

M=‘E®M€’

where M, is cyclic subspace with respect to L such that the restriction L; of
L to M has minimum polynomial 8;(z). Hence L = », @ L; and if we show
that L; = H, H,,, where H,, and H;, are involutions for z = 1, 2, --- , {, then
L = H,H,, where H; = »_!_, H,; is an involution for j = 1, 2.

So the problem is to show that each L; is the product of two involutions
when L; is a cyclic linear transformation whose characteristic polynomial
8;(x) is self-reciprocal. Decomposing §;(z) = r(@)(x + 1)(z — 1)** as in (1)
we get

Mi =N0®N1®N-1

where the terms in the right are the null spaces of the transformations r(L;),
(L; + 1) and (I; — 1)"* regpectively. et L; = U = U, ® U, ® U_,
be the corresponding decomposition of L;. We only need prove that each U;
is the product of two involutions. We consider two cases.

Case 1. S is a cyclic transformation of the linear space N whose char-
acteristic polynomial is symmetric and of even degree 2m. This is the situation
of the U, considered above and of U, if s, is even, ¢ = + 1. We choose a vector
% which generates N. Then u, uS, - -+ , u8*"™" is a basis of N which is represented
by yS™™, yS8™™, «ee ,y, +--, yS™7Y, if we take y = uS™. We take a new basis
consisting of the two sequences of vectors.

(3) Y, y(S + S‘): Y y(Sm—l + S_m+1)
and
(4) y(S — 87, y(§* — 87%, -+, y(8™ — 8™

which is also a basis since the independent term of the characteristic poly-
nomial is 1.

Now it is easily verified that the subspaces P and @ spanned by the vectors
(3) and (4) respectively are invariant with respect to the transformation S 4 S
For

y(S‘ + S—-z)(s + S—l) — y(Si+l + S—(;’+l)) + y(Si—l + S—(c’—l))



330 MARIA J. WONENBURGER

which also belongs to Pif 0 < 2 < m — 1, and when ¢ = m — 1 this is also
the case since

m—1
8"+ 8™ = —a, — 3. an (S + S7H.

Similarly we see that the transformation S — S~ takes any vector y(S* 4+ S7%)
into
y(S' + S—t)(s — S—l) — y(Sa'+l - S—i-—l) — y(Si—l — S—i+l)

which obviously belongs to @ for 0 = 7 £ m — 1 and hence

® P(S — 8™ = Q.

This equality together with

©) PS8+ SHCP

implies

) QIS+ 8 =P —-8NS+S8HCPE -8 =@
and

® QS ~ S8 =P8 -8 =P(S+ 87 +4CP.

Now we define H as the involution of N whose plus and minus-spaces are
P and Q respectively. It follows from (6) and (7) that

9) (S + SHH = H(S + 87,
and from (5) and (8) that
(10) (S — SHH = —H(S — 87").
Adding (9) and (10) and dividing by 2 we get

SH = HS™'

which implies that H’ = HS is an involution, for H”* = HSHS = HHS™'S =
identity. Hence S8 = HH' is the product of two involutions.

Case 2. S is a cyclic transformation of the linear space N and its minimum

polynomial is of the form (z — €)*"*', ¢ = 1. Then if v, vS, --- , v8" is a
basis, taking y = »S™ it is represented by yS™™, -+, y, -+, 8”. Thus the two
sequences

Y, y(S + S-l)’ ) y(Sm + S—m)
and
y(S - S—l)? e ’y(s.. - S—n)
together form a basis of N. We denote again by P and @ the subspaces spanned
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by the first and second sequences, respectively. As in the previous case we get
that

P(S+ S8 CP
for clearly y(S* 4+ S (S + 8™") C Pifi < mand for¢ = m,
y(8™ + 8TH(S + 87 = y(8™ 4+ 87 + y(S™T 4+ ST,

But (S — ¢)*"*' =0 implies that (S — ¢*"** = 0 = (8* — 2¢S + 1)™*' and
multiplying by S™"*" we get

m+1

S+ 87— 20" =0 = 3 ¢S + 8, With cmey = 1.

=0
Hence
Sm-l—l + S—m—l — ""ZC;‘(S'. + S")
and y(S™* + ST ) e P. . '
Similarly P(S — S™) C @ for clearly y(S* + S™*)(S — S7*) belongs to Q
for ¢ < m, and for ¢ = m, we obtain y(S™*' — §™™7) — (8" — §"*).
Now, since (S — ¢)*"** = 0, (S — ¢*"(8* — 1) = 0 which gives

m+1

S+ 8" —20"(S =8 =0= 2 di(S — 8 with dps, = 1.

t=]1

Hence

Sm+1 - S—-m—l — _Zd‘(sn — S—i)
=1
and y(S™"' — 8§ ") ¢ Q. Thus P(S — S™') = @ and since we have established
(5) and (6) we can apply the rest of the argument of the previous case to get
the conclusion, Now dim P = dim @ + 1 and since P(S — S7') = Q, we know
that the elements of order S — ¢ belong to P.

Remark: The proof of the theorem shows that given an invertible linear
transformation S of a vector space M, if there exists a decomposition M =
P @ Q such that P(S + S™*) C Pand P(S — 87") = @, and H is the involu-
tion with plus- and minus-spaces P and @, then S = HH' is the product of two
involutions. When S is a cyclic transformation whose minimum polynomial
is self-reciprocal, if u ¢ M generates M we can take P as the space spanned by the
vectors of the form u(S* 4+ S*) and Q as the subspace spanned by the vector
(S8 — 8,i=0,1,---.

Conversely, if a transformation S = HH’ is the product of two involutions,
then H and H’ commute with § 4+ S™! and anticommutes with S — §’, since

H(HH' 4+ H'Hy = (HH' + H’'H)H; H(HH' — H'H) = —(HH' — H'H)H

and we can write equivalent equations for H’,
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As an application of the ideas developed above we are going to show that
a unitary transformation U of a finite dimensional Hilbert space is the product
of two wunifarian involutions if and only if its spectrum counting multiplicilies,
18 symmetric with respect to the real axis. For a proof of this result without the
assumption that the space is finite dimenional see [1, Theorem 6.3].

It is clear that the condition is necessary. On the other hand it is well-known
that a unitary transformation of a finite dimensional Hilbert space admits an
orthonormal basis of characteristic vectors and the characteristic values are
complex numbers of norm 1. Our condition says that if « = a + b7 is a char-
acteristic value with multiplicity », then & = @ — b7 is a characteristic value
with multiplicity 7. The basis vectors corresponding to the characteristic values
1 and —1 span an invariant subspace and the restriction of U to this subspace
is an involution; therefore the problem is obvious for this subspace. As to its
orthogonal complement, the subspace spanned by the other characteristic
vectors, we can decompose it in direct sum of orthogonal planes P; spanned by
pairs of orthonormal vectors u and v satisfying uU = au and vU = av, |a| = 1.
The minimum polynomial of the restriction U,; of U to such a plane is
(z—a)(z—a&) and u+v and (u+v)(U—U1)=2biu—2biv=2bi(u—v) form a
basis for this plane. Moreover the involution H; defined by (v + v)H; = u + v
and (u — v)H; = —(u — v) is a unitarian involution, since (v + v, 4 — v) =
(u, u) — (v, v) = 0. Consequently H,U, is also a unitarian involution HY,
Thus U = HH’, where H and H’ are the unitarian involutions whose restric-
tions to each P, coincide with H; and H’ respectively.

3. From now on when we say that we have a bilinear form on M without
further specification we will mean a non-degenerate bilinear form which is either
symmetric or skew-symmetric and will be represented by (z, y). A linear trans-
formation 8 of M into itself such that (z8, y8) = (z, y) for all z, y e M will
be called a form preserving transformation. With respect to abasisu;, 4, *+* , Un
of M the bilinear form is represented by a non-singular m X m maftrix B =
(b;;) with b;; = (u;, u;) and a linear transformation which takes u; into u;S =
Y a:;u; is defined by the matrix A = (a:;). The transformation is form preserv-
ing if and only if ABA* = B, where A* denotes the transpose of A. This equality
implies that A is non-singular and B'AB = (4™ = (47!)". Since a matrix
is similar to its transpose, we have that a form preserving transformation is
similar to its inverse; hence its minimum polynomial is self-reciprocal.

As usual if (z, y) is symmetric we call the form preserving transformations
orthogonal transformations. When the form is skew-symmetric we call the form
preserving transformations sympletic and we will say that a linear transforma-
tion S 1s skew-sympletic if (xS, yS) = —(z, y).

A subspace N of M 1is non-degenerale if the restriction of the bilinear form to
N s non-degenerate.

Given a linear transformation S of M, we denote by K(g(S)) the kernel
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or null space of the transformation g(S) and by Mg(S) its image or rank space.
Two subspaces M, and M, are mutually orthogonal if (v;, v,) = 0 for any
v; ¢ M; and we denote by M1 = {ue M | (u, v,) = 0 for all v, e M,}, the sub-
space orthogonal to M,. When M, is non-degenerate, we have M = M, @ M?}
and the subspace MY is called the orthogonal complement of M.
When S is a form preserving transformation we have (uS™}, v) = (u, vS).
More generally, if g(x) = D_: a.z’,

<u7 vg<S)) = Z ai(u: vSi) = Z ai<us—‘y 1)) = (ug(s—l), ?)).

Proposition. Let M be a finite dimensional vector space with a bilinear form
and S a form preserving transformation. If r(z) s a polynomial satisfying r(0) =0,
the subspaces Mr(S) and K(F(S)) are mutually orthogonal.

Proof. Let ue Mr(S) and v e K(7(S)), then u = yr(S). Thus, if n = deg r(x),
@,%) = @, yr(S) = @(S™), y) = @(S)S", yS") = rOEF(S), yS")
= r(0)(0, ¥S") = 0.

Corollary. Let M be a finite dimensional vector space with a bilinear form,
S a form preserving transformation and p(x) its minimum polynomial. Let p(x) =
I1: )" be the decomposition of p(x) into drreducible self-reciprocal factors.
Then M = Y @ K(r,(S)*) is a direct decomposition of M into non-degenerate
mutually orthogonal invariant subspaces.

roof. It is well-known that M = Z @ K(r:(8)™). Since
MT:’(S)M = Z K("i(s)hi)
iy

and r;(z) = 7.(z), the proposition implies that the subspaces K(r,(S)") are
mutually orthogonal. It follows from this fact that each K(r;(S)*) is non-
degenerate.

Theorem 2. Let M be a finite dimensional vector space with a non-degenerate
bilinear form and let S be a form preserving transformation. Then

(a) if the bilinear form is symmetric, S s the product of two orthogonal involu-
lions.

(b) if the bilinear form is skew symmetric, S is the product of two skew-sympletic
tnwvolutions.

Taking the decomposition of M given in the corollary we can write 8 =
Z @ 8. where each 8; is a form preserving linear transformation with mini-
mum polynomial r,(z)"". Hence, in order to establish the theorem, it is enough
to show that it is true for each S;, that is, we have to prove it in the following
cases.

Case I. S is a form preserving transformation whose minimum polynomial

r(x)" = (g(x)§(x))" is a power of the product g(x)§(x) of two distinct irreducible
polynomials.
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Case II. 8 is a form preserving transformation whose minimum polynomial
is the power of an irreducible polynomial r(z), which consequently must be
self-reciprocal.

The next two lemmas will take care of Case 1.

Lemma 1. Let M be a finite dimensional vector space with a bilinear form
and S a form preserving transformation whose minimum polynomial is the h-th
power of the product of two distinct irreducible polynomials g(x) and §(z). Then
M can be decomposed into a direct sum of cyclic subspaces which are mutually
orthogonal.

Proof. Wehave M = K(g(S)") @ K(G(S)"*) and by the proposition
K(g(SN* D Mg(8)* = K(g(8)"),

that is, each subspace is totally isotropic. Now, if « is an element of order
g(S)*, then ug(8)*' + 0 and there exists an element v ¢ K(§(S)") such that
(ug(8)*™*, v) *+ 0. That is,

n 0 * (u,v9(87)*™) = g(0)" @S **° P, 05(S)*T),

which implies that v has order §(z)". Therefore « + v has order (g(z)§(z))".
We are going to show that the restriction of the bilinear form to the cyclic
subspace N generated by u + v is non-degenerate. For any element 0 + we N
is of the form w = ug(S)‘q(S)S™ + vg(8)*'¢’(8)8™, where ¢(z) and ¢'(z) are
polynomials relatively prime to g(z) and §(z), respectively, and ¢(0) #+ O,
¢’ (0) + 0; since w #+ 0, one of the terms, say, ug(S)‘q(S)S™ * 0.
Now we can find polynomials a{x) and b{(x) such that

a@) @) + d@)§@)" = 1,

since §(z) is relatively prime to §(z). This means that »a(S)d(8) = v.
Let z = v§(S)**"'a(8)8", then

(w, 2) = (ug(8)'q(S)8™, v5(8)""a(S)S")
@, v§(8)**7g(87) a(S)g(SH)S™)
2O)FO) @S ¥, vg(S)"™) + 0 by (11)

fr=m+ ( —h+1)degglx) + deg q(S).

Similarly, if w = »§(S)*'¢’(S)S™ we can find a(zx) and an integer f such that
z = ug(8)**' 'a(8)8’ gives (w, z) + 0.

Once that we have found a non-degenerate cyclic subspace N we have M =
N @ N*.If N* is cyclic we are through, but, in any case the restriction of S to
N+ satisfies again the condition of the lemma and we can apply the same process
to N*, to decompose it in the sum of a non-degenerate cyclic subspace and its
orthogonal complement. Continuing this process we arrive at a decomposition
of M in direct sum of mutually orthogonal cyclic subspaces.
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Lemma 2. Let M be a finite dimensional vector space with a bilinear form and
S a cyclic and form preserving transformation. Then

(1) #f the bilinear form ts symmetric S is the product of two orthogonal involu-
tions.

(ii) ¢f the bilinear form is skew-symmetric S 1s the product of two skew-sympletic
tnvolutions.

Proof. In the proof of theorem 1 to decompose the cyclic transformation S
in the product of two involutions H, and H, , we choose a vector « which gener-
ates the space and then we take H, as the involution whose plus-space P is the
subspace spanned by the vectors «(S* + S™*) and whose minus-space @ is the
subspace spanned by the vectors u(S* — S7°). When the bilinear form is sym-
metric, since

@S + 87, u(S — 87 = @S + 87, uS) — (S + 87§, u)
= @(S + 87, uS) — WS, u(S + 8F) =0
the subspaces P and @ are mutually orthogonal, hence H, is an orthogonal
involution and the involution H, = H,8 is also an orthogonal involution be-

cause it is the product of two orthogonal transformations.
When the bilinear form is skew-symmetric, we have

@(S* 4+ 89, u(S + 87) = @(S" + 87, uS) + @(S’ + 878, u)
= @(S" + 879, uS) + @S, u(S™ + 89 = 0.
Hence if v, w ¢ P, (v, w) = 0. Similarly
@(S* — 879, u(S" — 87) = @(S — S, us)
—@(S* — 878, u) = @(S — 8§77, u’8) — @S, u(SF - §) =0,
so that if v, v’ ¢ Q, then (', w') = 0. Henceifz = v + v’ and y = w + v/,
@y =@ w)+ 0w
while
H, ,yH) = @ — v, w —w) = —@,v) — @', ) = —(, ),

which shows that H, is a skew-sympletic involution. Therefore H, = H,S
is also skew-sympletic and the proof is complete.
To deal with case IT we are going to establish first a couple of lemmas.

Lemma 3. Let M be a finile dimensional vector space with a bilinear form
and let S be a form preserving transformation whose minimum polynomial p(x)"
1s the power of an irreducible polynomial. Let w ¢ M be a vector of order p(z)",
then the subspace U generated by u is non-degenerate if and only if there exists a
vector v ¢ U such that (up(S)* ™, v) # 0. This inequality implies that v has order
p(@)"
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Proof. Notice that p(z) must be self-reciprocal. Since the “only if”’ part is
obvious we only need establish the sufficiency of the condition. Thus we will
show that, if the condition holds, for any vector 0 = w ¢ U, there exists a
z ¢ U such that (w, z) + 0.

Since v ¢ U, v = uh(8) and any 0 += w & U can be expressed as

w = up(S)*g(8)8"

with k < n, g(8) relatively prime to p(S) and ¢g(0) #= 0. Then we take z =
up(S)"**h(8)a(8) 8, where f = deg g(S) — (n — k — 1) deg p(z) + r and
a(x)j(x) + bx)p(x)" = 1. Hence

(w,2) = (up(S)*g(S)S", up(8)"™*"h(S)a(S) ")
p(0)"*'g(0)wp(S)"", uh(8)) = p(0)" " "g(0)up(S)"",v) * 0.
It is clear that v must have order p(x)".

Lemma 4. Let M be a fintte dimensional vector space with a bilinear form
and let S be a form preserving transformation whose minimum polynomial is the
n-th power of an irreducible polynomial. Then either

(i) there exists a vector u of order p(x)" which generates a non-degenerate sub-
space U, or

(ii) there exists two vectors u and v of order p(S)" which generate the subspaces
U and V, respectively, whose intersection U M V = 0 and whose sum U @ V
18 non-degenerate.

Proof. Let U be the subspace generated by a vector u of order p(z)". If
U is non-degenerate there is nothing to prove. So let us assume that U is de-~
generate, then if v is a vector such that (up(S)"7?, v) # 0, we know by lemma 3
that » ¢ U, and clearly v has order p(z"). Let V be the subspace generated by
v. Let us assume that 0 = y e U N V; then y = up(8)‘g(S) = vp(8)*'¢’(S)
where g(z) and ¢’(x) are both relatively prime to p(z), which implies that the
orderofyism — t = n — ¢, that is, { = ¢'. Now, if a(x)g(z) + blx)px)" = 1,
we have

ya(S)p(8)™™" ™" = up(8)"™" = vp(8)""'¢'(S)a(S),

and since (up(S)" ™, v) + 0 we have
@p(8)"g’(S)a(S),v) * 0.

Hence, by lemma 3, V is non-degenerate, so that (i) holds. So to conclude the
proof of the lemma we have to show that if U M V = 0, then U + V is non-
degenerate, that is, that for any vector 0 = we U + V, thereexistsaze U + V
such that (w, z2) += 0.

Let

w = up(8S)'g(S)8™ + vp(8)" g'(S)S™
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with the usual assumptions on ¢(z) and ¢’(z), if ¢’ < ¢ taking

z = up(8)"" a(8)S’

we get

(,9p(8)"'¢'()8™) * 0

for a(z) and f conveniently chosen. On the other hand

(&, up(S)'g(9)S™) = (up(S)" ™", uh(8)) = 0
because up(S)* """ = 0if ¢ > ¢, and by lemma 3 if { = ¢’. Hence

@ w) = (,wp(8)"g'($)S™) * 0.

The case ¢’ > tis handled in similar manner taking
z = op(S)" '’ (S)S”.

So the lemma is established.

Once we have a non-degenerate subspace M, we decompose M = M, P
M+ and the restriction of S to M, satisfies again the condition of the lemma so
that by repeated applications of this lemma we have that in case I1I we can
decompose the space M in a direct sum D @ M, of mutually orthogonal sub-
spaces. Each one of the M, is either cyclic or is a direct sum of two degenerate
cyclic subspaces of the same order. Now lemma 2 takes care of the decomposition
of the restriction of S to the cyclic subspace into a product of two orthogonal or
skew-sympletic involutions. Hence to complete the proof of the theorem we
have to show that such decomposition is also possible for the other kind of
spaces. This will be our last lemma.

Lemma 5. Let M be a vector space with a bilinear form and S a form preserving
transformalion such that M = U @ V 4s the direct sum of two cyclic subspaces
of order p(x)". Then

@A) #f the form is symmetric, S is the product of two orthogonal involutions.

(ii) ¢f the form is skew-symmeiric, S is the product of two skew-sympletic in-
volutions.

Proof. If there exists in M a vector of order p(z)" which generates a non-
degenerate subspace N then M = N @ N* is the direct sum of two cyclic sub-
spaces and the assertion of the lemma follows from lemma 2. Thus we can as-
sume that for any vector u, ¢ M of order p(x)" the cyclic space U, generated
by wu, is degenerate. Then we have seen in the proof of the previous lemma that,
if u, is a vector satisfying (u,p(S)"™*, u,) = 0, M = U, @ U, where U, is the
cyclic subspace generated by u,.

Let us decompose U, = P, &P @Q,, where P, is the subspace spanned by the
vectors of the form %,(S* + S7*) and @, is spanned by the vectors of the form
u(S* — 87%). Now if deg p(z) = 2m, we take the vector w = w,p(S)" 8 ™"V ¢
Py, and, if deg p(z) #+ 2m, p(z) = 2 == 1, we take w = u,(S &= 1)*™" ¢ P,, since



338 MARIA J. WONENBURGER

it has order z = 1. Therefore in any case w ¢ @, and we can find a vector u,
in Q% satisfying (w, u,) + 0. This implies that u, has order p(z)", and M =
U, @D U, Let U, = P, P Q, where P, and Q, have the obvious meaning.

When S is an orthogonal transformation we have Py D Q; 4+ @Q., ¢ = 1, 2.
For

(12) w:(S* + 875, ux(S" — 87) = —u,(S* + S — 87, u) =0,
since u,(S* + S7)(8" — 8™ £ Q, and u, ¢ Q; similarly
13) W (S* + 879, u (S — S7%) = 0.

Hence if H is the involution with plus-space P = P, @ P, and minus space
Q = Q, @ Q,, H is an orthogonal transformation and S = HH’ where H' is
another involution.

When 8 is a sympletic transformation, (12) and (13) imply that P; and @,
i + j, are mutually orthogonal in this case also. Since now Py D P,, the in-
volution H with plus-space P = P; @ . and minus space @ = P, @ Q, is
skew-sympletic and S = HH’ where H' is again an involution.

The proof of the theorem is complete.

Remark I. Lemma 5 is not superfluous, that is, M can not always be de-
composed in direct sum of mutually orthogonal cyclic subspaces. Following the
methods used in the proofs of the preceding lemmas it is easy to show that such
decomposition is impossible only in the following cases:

(a) the bilinear form is symmetric and (x &= 1)*" is an elementary divisor of S,

(b) the bilinear form is skew-symmetric and (z 4= 1)*”*! is an elementary
divisor of S.

Hence such elementary divisors appear always an even number of times.

Remark II. In the case of a symmetric bilinear form, if we could be sure
that the subspaces involved in the proof are non-degenerate, the proof of Theorem
2 becomes considerably simpler. This is the situation if the form has Witt index
0, but for this case the reader can find a more elementary proof in [4].

In the case of a skew-symmetric bilinear form our arguments indicate that
it is not possible to decompose any sympletic transformation into the product
of two sympletic involutions. This is also seen more clearly in the case of a
two dimensional space since the only sympletic involutions are plus and minus
the identity.
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