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1. If (R is a regular ring with unit element, the lattice LfäiRfä) of

principal left (right) ideals ordered by inclusion is a complemented

modular lattice and the lattices L^ and F^ are dual isomorphic,

[5, Part II, Chapter II]. öl is called an «-ring if L(% is «-complete

and «-continuous and when (R is an «-ring for any cardinal number

«, (R is a von Neumann ring.

The ring (R„ of »X» matrices with entries in (R is regular if (R is

regular, but the fact that (R is an «-ring does not guarantee that (R„

is also an «-ring. If (Rn is an «-ring (von Neumann ring) for every

positive integer n, we say that (R is a matrix «-ring (von Neumann

ring). In the present note we give a necessary and sufficient condi-

tion for an «-ring to be a matrix «-ring, and two examples of matrix

«-rings.

As a consequence of the additivity of upper «-continuity in «-

complete, complemented modular lattices (see [l, Theorem 4.3])

and the additivity of «-completeness under certain conditions it was

shown in [2] that (R is a matrix «-ring if (R2 is an «-ring [2, Corol-

lary 3 of Theorem 3.1].

2. In what follows (R denotes a regular ring with unit element,

(w)i and (u)r are the principal left and right ideal, respectively, gen-

erated by wG(R. íí denotes an ordinal number and Ö its cardinal

power.

It is convenient to think of Lq^ as the lattice of finitely generated

submodules of the left (R-module "of ordered pairs (au a2), a¿G<R, [5,

Part II, Chapter II, Appendix 3]. {(ai, a2)} will denote the submod-

ule generated by (ai, a2). A finitely generated submodule M oí the

left (R-module of ordered pairs admits a canonical basis, that is,

M= {(e,0)} 9 {(a,/)},

where e2 = e, /*=/, fa = a, ae = Q and © means direct sum. The sub-

module {(e, 0)} is uniquely defined by M since it is equal to

MC\{il, 0)}, that is, {(e, 0)} is the submodule of elements of M

whose second component is zero.

Our first step is to find a decomposition of M where the submodule

MC\ {(0, 1)} also appears explicitly.
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Lemma 1. Any finitely generated submodule M of the left (R-module of

ordered pairs (alt a2), a,E(R, can be decomposed in the following way

M = {(ex,0)} © {(ax, a2)} © {(0, e2)}

where e\ = ei, axex = a2e2 = § and (ax)r = (a2)T-

Proof. Let U be the involutorial automorphism of the left (R-

module of ordered pairs which takes the vector (a, b) into (b, a).

U takes a finitely generated submodule into a finitely generated sub-

module and defines an involutorial automorphism U of Lq^ .

Suppose M = {(ex, 0)} © {(a,f)} under a canonical decomposition.

Then exa — 0,fa = a. Taking a canonical decomposition of

V\(a,f)} = {(/, a)} = {(e2, 0)} © |(a2, ax)},

el = e2, a&2 = 0 and (ai) ¡ = (a) ¡. Therefore

M = {(eu0)} © {(aha2)} © {(0,e2)}.

Since Mf\ {(0, 1)} = {(a, /)} H {(0, 1)}, it follows that MC\ {(0, 1)}
= {(0, e2)}. Because ax = xa and aei = 0, we have aißi = 0. Moreover,

{(alt a2)}r\{ (0, 1)} = {(ax, a2)}H{(1, 0)} = 0 implies that the left

annihilators of ax and a2 coincide, hence (ax)r= (a2)r.

3. The next point which we need to emphasize is the fact that a

left factor-correspondence ([5, Part II, Definition 15.1], notice that

this definition of f.-c. is for right principal ideals which we call right

factor-correspondence) between (u)i and (v)t can be determined by

a pair of elements of öl. This fact is an immediate consequence of the

definition of factor-correspondence and its precise statement is given

in the following lemma.

Lemma 2. A left factor-correspondence between (u)i and (v)i is com-

pletely determined by any pair of elements u', z/£(R corresponding to

each other and such that (u')i= (u)i and (v')i= (v)i. Conversely, if (u')r

— (v')r, the one-to-one mapping

xu' *-+ xv',       x E Si,

defines a factor-correspondence between (u') ¡ and (v') ¡.

The factor-correspondence defined by the pair u, v will be denoted

by (u:v).

We introduce an order in the set of factor-correspondences by de-

fining

(ux'.vx) =■ (u2'.i>2)

if (ux)iD(u2)i and u2 and i>2 correspond to each other in (ux'.vx).
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Theorem 1. Let (Rbea regular ring such that L(% is upper ^-complete

and upper ^-continuous. Then the lattice L^ is upper ^-complete if

and only if every increasing chain (u'".va), a<ß and 0^«, of left

factor-correspondences has a supremum. Moreover, if 7,^ is ^-complete

it is upper ^-continuous.

Proof. The last statement is an immediate consequence of the

theorem of Amemiya and Halperin on the additivity of upper «-

continuity is complemented, «-complete modular lattices, (cf. [l,

Theorem 4.3]). For, 1^= [O, {(1, 0)} \J {(0, 1)} ] and [O, {(1, 0)} ]
is isomorphic to 7,^.

Assume that L^ is upper «-complete and let iua\V), a<Q, and

0^«, be an increasing chain of left factor-correspondences. Then the

modules    M" = {iua, v") j    form    an   increasing   Q-chain.    Since

M«r\ {(1, 0)} = M«r\ í(o, i)} = 0, (U(M*|a < ß))n {(o,i)}
= (U(Ma|a<0))r\{(l, 0)} =0, because L^ is upper «-continuous.

Therefore, by Lemma 1, U(Af"| a<Q) = {(w, v)} with (w)r= (v), and

it is clear that (u'.v) is the supremum of the (ua'.va).

So we assume now that, if 0^«, every increasing fl-chain of left

factor-correspondences has a supremum and proceed to show that

L(&t is upper «-complete. Let M" be an increasing Q-chain of modules

in ¿(R, and let

M«= {(e",0)} ®{(a°,f°)}

be a canonical decomposition of the M". If (ei)¡=U((ea)i|o:<Q), it is

clear that the chain M" has a supremum if and only if the increasing

chain of Na = Ma\J {(ei, 0)} has a supremum. Now,

ff"= {(*i,0)} ®{(b",f)}

with b" = a" — a"ei, is a canonical decomposition of N" and we only

need show that the chain of modules {(ba, f")} has a supremum.

This chain is actually increasing, for {(ba, f")} ENß for a^ß implies

that

(b",f) = di(eh 0) + d2(¥,f) = (did + d2¥, d2f),

hence ba = d2bß, because byei = 0 for all y<Q, and consequently (ba,fa)

= d2(b»,f). By Lemma 1,

(1) {iba,f)} = {ibai,b°2)}®{i0,e°2)},

where 6Jef=0 and (bf)r= (ij),. Now {iV, f)} f\ {(1, 0)} = 0 implies
ibZ)ir\i4)i = 0 if a<ß; for it follows from dib% = d2e\ that

idib\, 0) = diibl, b\) - d2(0, e2) C {(/,/)},
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hence ¿iö" = 0 and consequently dxb2=0, since (b")r=(ba)T. If (e2)i

= \J((e%)i\a<ti), then, by the upper ^-continuity of L(%,

(2) (e2)in(b"2)i = 0.

The increasing chain defined by the modules (1) has a supremum

if and only if the increasing chain defined by

P" = {(blbl)} + {(0,e2)}

has a supremum. Now (2) implies Pan{(l, 0)}=0, hence, by

Lemma 1,

p" = {(aï, at)} © {(0,e2)},

where a2e2 = 0 and (a")r=(a2)r- It is easily seen that the modules

{(a", a2)}, a<ß, form an increasing chain; therefore (a"'.a") is an

increasing chain of left factor-correspondences. Let (ai:a2) be the

supremum of this chain, then

{(aha2)} © {(0,g2)}  =U(P"|«< 0) = U({(i-,/-)}|aG 0).

Theorem 2. Let (R be an i^-ring. Then Si2 M an R-ring if and only if

every increasing 0,-chain of left or right factor-correspondences has a

supremum when ÖiSK.

Proof. This is a consequence of Theorem 1 and the dual isomor-

phism between Lfo and Rq^.

Corollary 1. Any complete rank-ring <H is a matrix von Neumann

ring. (See [5, Part II, Definition 18.1].)

Proof. Given any increasing chain of left factor-correspondences

(ua:v), a<U, the W can be chosen to be idempotents. Let R denote

the rank-function. Since R(uß) is a bounded increasing chain of real

numbers, we can replace the given chain by an increasing sequence

(ua{: vai), i=l, 2, ■ • • , with the same upper bound. Then we can

even assume that the uai besides being idempotent satisfy uaiua>

= uahitti = uai for i<j (we only have to apply the construction in the

proof of Lemma 18.3 of [5] to the sequence 1 — uai). Now, since

(ua>—uai)ua< = uai(ua> — uai)=0 and (ua> — uai)2 = ua> — uai,

R(ua¡ — uai) = P(w"0 — R(uai).

Therefore, by the completeness of Si, the Cauchy sequence uai,

i=\,2, • ■ • hasalimittt. On the other hand, R(v"'— vai) = R(ua> — uai)

since v"'— vai and ua' — uai correspond to each other under (ua>:va>).

Then, if lim;..«, Va* — v, (u:v) is the supremum of the given chain.
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Corollary 2. If (ñ is an «-n'wg and L(r has a large 2 basis, then

every increasing chain of left or right factor-correspondences in (R has a

supremum.

Proof. The corollary follows from Theorem 2 and [2, Corollary 2

of Theorem 3.1].

4. As an application of Theorem 2 we give two examples of matrix

«-rings.

Example 1. (This is a generalization of Kaplansky's example [3,

p. 526] and [4, Example 3, p. 604].) Let J be any set such that

/S:«. Let {Da}aeJ be a family of division rings and Fa a proper

division subring of 73 a for every aEJ. Consider the functions /

which map each element aE J into an element of 73a and such that,

if J; = {a I a E J, fia) G F«}, J1 = « • Then the ring (R of such functions

under the natural definition of addition and multiplication is a von

Neumann ring. Applying Theorem 2 it is easily seen that (R is a

matrix «-ring, but, if />«, (R is not a matrix «'-ring for any «'>«.

Example 2. Let (B be an «-complete Boolean algebra and X its

dual space, that is, X is the space of the Stone representation. Then

A is a totally disconnected, compact, Hausdorff space. Consider the

functions/ over X with values in a Galois field F satisfying the condi-

tion: for every aEF, the set

Xa = {x I x G X, fix) = a]

is a clopen set of X. Then, under the natural definition of addition

and multiplication of a function, such functions form a matrix «-ring.
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