MATRIX N-RINGS

MARIA J. WONENBURGER¹

1. If \mathfrak{R} is a regular ring with unit element, the lattice $\overline{L}_{\mathfrak{R}}(\overline{R}_{\mathfrak{R}})$ of principal left (right) ideals ordered by inclusion is a complemented modular lattice and the lattices $\overline{L}_{\mathfrak{R}}$ and $\overline{R}_{\mathfrak{R}}$ are dual isomorphic, [5, Part II, Chapter II]. \mathfrak{R} is called an \mathfrak{N} -ring if $\overline{L}_{\mathfrak{R}}$ is \mathfrak{N} -complete and \mathfrak{N} -continuous and when \mathfrak{R} is an \mathfrak{N} -ring for any cardinal number \mathfrak{N} , \mathfrak{R} is a von Neumann ring.

The ring \mathfrak{R}_n of $n \times n$ matrices with entries in \mathfrak{R} is regular if \mathfrak{R} is regular, but the fact that \mathfrak{R} is an \aleph -ring does not guarantee that \mathfrak{R}_n is also an \aleph -ring. If \mathfrak{R}_n is an \aleph -ring (von Neumann ring) for every positive integer n, we say that \mathfrak{R} is a matrix \aleph -ring (von Neumann ring). In the present note we give a necessary and sufficient condition for an \aleph -ring to be a matrix \aleph -ring, and two examples of matrix \aleph -rings.

As a consequence of the additivity of upper \aleph -continuity in \aleph complete, complemented modular lattices (see [1, Theorem 4.3]) and the additivity of \aleph -completeness under certain conditions it was shown in [2] that \Re is a matrix \aleph -ring if \Re_2 is an \aleph -ring [2, Corollary 3 of Theorem 3.1].

2. In what follows \mathfrak{R} denotes a regular ring with unit element, (u)_l and (u)_r are the principal left and right ideal, respectively, generated by $u \in \mathfrak{R}$. Ω denotes an ordinal number and $\overline{\Omega}$ its cardinal power.

It is convenient to think of $\overline{L}_{\mathfrak{R}_2}$ as the lattice of finitely generated submodules of the left \mathfrak{R} -module of ordered pairs $(a_1, a_2), a_i \in \mathfrak{R}$, [5, Part II, Chapter II, Appendix 3]. $\{(a_1, a_2)\}$ will denote the submodule generated by (a_1, a_2) . A finitely generated submodule M of the left \mathfrak{R} -module of ordered pairs admits a canonical basis, that is,

$$M = \{(e, 0)\} \oplus \{(a, f)\},\$$

where $e^2 = e$, $f^2 = f$, fa = a, ae = 0 and \oplus means direct sum. The submodule $\{(e, 0)\}$ is uniquely defined by M since it is equal to $M \cap \{(1, 0)\}$, that is, $\{(e, 0)\}$ is the submodule of elements of M whose second component is zero.

Our first step is to find a decomposition of M where the submodule $M \cap \{(0, 1)\}$ also appears explicitly.

Received by the editors March 8, 1962.

 $^{^{\}rm 1}$ Postdoctorate Fellow (of the National Research Council of Canada) at Queen's University.

LEMMA 1. Any finitely generated submodule M of the left \mathfrak{R} -module of ordered pairs $(a_1, a_2), a_i \in \mathfrak{R}$, can be decomposed in the following way

$$M = \{(e_1, 0)\} \oplus \{(a_1, a_2)\} \oplus \{(0, e_2)\}$$

where $e_i^2 = e_i$, $a_1e_1 = a_2e_2 = 0$ and $(a_1)_r = (a_2)_r$.

PROOF. Let U be the involutorial automorphism of the left \mathbb{R} module of ordered pairs which takes the vector (a, b) into (b, a). U takes a finitely generated submodule into a finitely generated submodule and defines an involutorial automorphism \overline{U} of $\overline{L}_{\mathbb{R}_{\bullet}}$.

Suppose $M = \{(e_1, 0)\} \oplus \{(a, f)\}$ under a canonical decomposition. Then $e_1a = 0$, fa = a. Taking a canonical decomposition of

$$\overline{U}\{(a,f)\} = \{(f,a)\} = \{(e_2,0)\} \oplus \{(a_2,a_1)\},\$$

 $e_2^2 = e_2, a_2e_2 = 0$ and $(a_1)_l = (a)_l$. Therefore

 $M = \{(e_1, 0)\} \oplus \{(a_1, a_2)\} \oplus \{(0, e_2)\}.$

Since $M \cap \{(0, 1)\} = \{(a, f)\} \cap \{(0, 1)\}$, it follows that $M \cap \{(0, 1)\} = \{(0, e_2)\}$. Because $a_1 = xa$ and $ae_1 = 0$, we have $a_1e_1 = 0$. Moreover, $\{(a_1, a_2)\} \cap \{(0, 1)\} = \{(a_1, a_2)\} \cap \{(1, 0)\} = 0$ implies that the left annihilators of a_1 and a_2 coincide, hence $(a_1)_r = (a_2)_r$.

3. The next point which we need to emphasize is the fact that a left factor-correspondence ([5, Part II, Definition 15.1], notice that this definition of f.-c. is for right principal ideals which we call right factor-correspondence) between $(u)_1$ and $(v)_1$ can be determined by a pair of elements of \mathfrak{R} . This fact is an immediate consequence of the definition of factor-correspondence and its precise statement is given in the following lemma.

LEMMA 2. A left factor-correspondence between $(u)_i$ and $(v)_i$ is completely determined by any pair of elements $u', v' \in \mathbb{R}$ corresponding to each other and such that $(u')_i = (u)_i$ and $(v')_i = (v)_i$. Conversely, if $(u')_r = (v')_r$, the one-to-one mapping

$$xu' \leftrightarrow xv', \quad x \in \mathfrak{R},$$

defines a factor-correspondence between $(u')_{l}$ and $(v')_{l}$.

The factor-correspondence defined by the pair u, v will be denoted by (u:v).

We introduce an order in the set of factor-correspondences by defining

$$(u_1:v_1) \geq (u_2:v_2)$$

if $(u_1)_1 \supset (u_2)_1$ and u_2 and v_2 correspond to each other in $(u_1:v_1)$.

MATRIX **X**-RINGS

THEOREM 1. Let \mathfrak{R} be a regular ring such that $\overline{L}_{\mathfrak{R}}$ is upper \aleph -complete and upper \aleph -continuous. Then the lattice $\overline{L}_{\mathfrak{R}_2}$ is upper \aleph -complete if and only if every increasing chain $(u^{\alpha}:v^{\alpha}), \alpha < \Omega$ and $\overline{\Omega} \leq \aleph$, of left factor-correspondences has a supremum. Moreover, if $\overline{L}_{\mathfrak{R}_2}$ is \aleph -complete it is upper \aleph -continuous.

PROOF. The last statement is an immediate consequence of the theorem of Amemiya and Halperin on the additivity of upper \aleph -continuity is complemented, \aleph -complete modular lattices, (cf. [1, Theorem 4.3]). For, $\overline{L}_{\Re_2} = [0, \{(1, 0)\} \cup \{(0, 1)\}]$ and $[0, \{(1, 0)\}]$ is isomorphic to \overline{L}_{\Re} .

Assume that $\overline{L}_{\mathfrak{R}_1}$ is upper \aleph -complete and let $(u^{\alpha}:v^{\alpha}), \alpha < \Omega$ and $\overline{\Omega} \leq \aleph$, be an increasing chain of left factor-correspondences. Then the modules $M^{\alpha} = \{(u^{\alpha}, v^{\alpha})\}$ form an increasing Ω -chain. Since $M^{\alpha} \cap \{(1, 0)\} = M^{\alpha} \cap \{(0, 1)\} = 0, (U(M^{\alpha} | \alpha < \Omega)) \cap \{(0, 1)\} = (U(M^{\alpha} | \alpha < \Omega)) \cap \{(1, 0)\} = 0$, because $\overline{L}_{\mathfrak{R}_2}$ is upper \aleph -continuous. Therefore, by Lemma 1, $U(M^{\alpha} | \alpha < \Omega) = \{(u, v)\}$ with $(u)_r = (v)_r$ and it is clear that (u:v) is the supremum of the $(u^{\alpha}:v^{\alpha})$.

So we assume now that, if $\overline{\Omega} \leq \aleph$, every increasing Ω -chain of left factor-correspondences has a supremum and proceed to show that $\overline{L}_{\mathcal{R}_{\bullet}}$ is upper \aleph -complete. Let M^{α} be an increasing Ω -chain of modules in $\overline{L}_{\mathcal{R}_{\bullet}}$ and let

$$M^{\alpha} = \{(e^{\alpha}, 0)\} \oplus \{(a^{\alpha}, f^{\alpha})\}$$

be a canonical decomposition of the M^{α} . If $(e_1)_l = \bigcup((e^{\alpha})_l | \alpha < \Omega)$, it is clear that the chain M^{α} has a supremum if and only if the increasing chain of $N^{\alpha} = M^{\alpha} \bigcup \{(e_1, 0)\}$ has a supremum. Now,

$$N^{\alpha} = \{(e_1, 0)\} \oplus \{(b^{\alpha}, f^{\alpha})\}$$

with $b^{\alpha} = a^{\alpha} - a^{\alpha}e_1$, is a canonical decomposition of N^{α} and we only need show that the chain of modules $\{(b^{\alpha}, f^{\alpha})\}$ has a supremum. This chain is actually increasing, for $\{(b^{\alpha}, f^{\alpha})\} \subset N^{\beta}$ for $\alpha \leq \beta$ implies that

$$(b^{\alpha}, f^{\alpha}) = d_1(e_1, 0) + d_2(b^{\beta}, f^{\beta}) = (d_1e_1 + d_2b^{\beta}, d_2f^{\beta}),$$

hence $b^{\alpha} = d_2 b^{\beta}$, because $b^{\gamma} e_1 = 0$ for all $\gamma < \Omega$, and consequently $(b^{\alpha}, f^{\alpha}) = d_2(b^{\beta}, f^{\beta})$. By Lemma 1,

(1)
$$\{(b^{\alpha}, f^{\alpha})\} = \{(b^{\alpha}_1, b^{\alpha}_2)\} \oplus \{(0, e^{\alpha}_2)\},\$$

where $b_2^{\alpha}e_2^{\alpha} = 0$ and $(b_1^{\alpha})_r = (b_2^{\alpha})_r$. Now $\{(b^{\beta}, f^{\beta})\} \cap \{(1, 0)\} = 0$ implies $(b_2^{\alpha})_l \cap (e_2^{\beta})_l = 0$ if $\alpha < \beta$; for it follows from $d_1b_2^{\alpha} = d_2e_2^{\beta}$ that

$$(d_1b_1^{\alpha}, 0) = d_1(b_1^{\alpha}, b_2^{\alpha}) - d_2(0, e_2^{\beta}) \subset \{(b^{\beta}, f^{\beta})\},\$$

1963]

hence $d_1b_1^{\alpha} = 0$ and consequently $d_1b_2^{\alpha} = 0$, since $(b_1^{\alpha})_r = (b_2^{\alpha})_r$. If $(e_2)_l = \bigcup((e_2^{\alpha})_l | \alpha < \Omega)$, then, by the upper \aleph -continuity of \overline{L}_{\Re} ,

$$(2) (e_2)_l \cap (b_2^{\alpha})_l = 0.$$

The increasing chain defined by the modules (1) has a supremum if and only if the increasing chain defined by

$$P^{\alpha} = \{ (b_1^{\alpha}, b_2^{\alpha}) \} + \{ (0, e_2) \}$$

has a supremum. Now (2) implies $P^{\alpha} \cap \{(1, 0)\} = 0$, hence, by Lemma 1,

$$P^{\alpha} = \{ (a_1^{\alpha}, a_2^{\alpha}) \} \oplus \{ (0, e_2) \},\$$

where $a_2^{\alpha}e_2 = 0$ and $(a_1^{\alpha})_r = (a_2^{\alpha})_r$. It is easily seen that the modules $\{(a_1^{\alpha}, a_2^{\alpha})\}, \alpha < \Omega$, form an increasing chain; therefore $(a_1^{\alpha}: a_2^{\alpha})$ is an increasing chain of left factor-correspondences. Let $(a_1:a_2)$ be the supremum of this chain, then

$$\{(a_1, a_2)\} \oplus \{(0, e_2)\} = \bigcup (P^{\alpha} \mid \alpha < \Omega) = \bigcup (\{(b^{\alpha}, f^{\alpha})\} \mid \alpha \in \Omega).$$

THEOREM 2. Let \mathfrak{R} be an \aleph -ring. Then \mathfrak{R}_2 is an \aleph -ring if and only if every increasing Ω -chain of left or right factor-correspondences has a supremum when $\overline{\Omega} \leq \aleph$.

PROOF. This is a consequence of Theorem 1 and the dual isomorphism between $\overline{L}_{\mathfrak{R}_1}$ and $\overline{R}_{\mathfrak{R}_2}$.

COROLLARY 1. Any complete rank-ring R is a matrix von Neumann ring. (See [5, Part II, Definition 18.1].)

PROOF. Given any increasing chain of left factor-correspondences $(u^{\alpha}:v^{\alpha}), \alpha < \Omega$, the u^{α} can be chosen to be idempotents. Let \overline{R} denote the rank-function. Since $\overline{R}(u^{\beta})$ is a bounded increasing chain of real numbers, we can replace the given chain by an increasing sequence $(u^{\alpha_i}:v^{\alpha_i}), i=1, 2, \cdots$, with the same upper bound. Then we can even assume that the u^{α_i} besides being idempotent satisfy $u^{\alpha_i}u^{\alpha_i} = u^{\alpha_i}u^{\alpha_i} = u^{\alpha_i}$ for i < j (we only have to apply the construction in the proof of Lemma 18.3 of [5] to the sequence $(u^{\alpha_i} - u^{\alpha_i})^2 = u^{\alpha_i} - u^{\alpha_i}$,

$$\overline{R}(u^{\alpha_j}-u^{\alpha_i})=\overline{R}(u^{\alpha_j})-\overline{R}(u^{\alpha_i}).$$

Therefore, by the completeness of \mathfrak{R} , the Cauchy sequence u^{α_i} , $i=1, 2, \cdots$ has a limit u. On the other hand, $\overline{R}(v^{\alpha_i}-v^{\alpha_i})=\overline{R}(u^{\alpha_i}-u^{\alpha_i})$ since $v^{\alpha_i}-v^{\alpha_i}$ and $u^{\alpha_i}-u^{\alpha_i}$ correspond to each other under $(u^{\alpha_i}:v^{\alpha_i})$. Then, if $\lim_{i\to\infty} v^{\alpha_i}=v$, (u:v) is the supremum of the given chain.

COROLLARY 2. If \mathfrak{R} is an \aleph -ring and $\overline{L}_{\mathfrak{R}}$ has a large 2 basis, then every increasing chain of left or right factor-correspondences in \mathfrak{R} has a supremum.

PROOF. The corollary follows from Theorem 2 and [2, Corollary 2 of Theorem 3.1].

4. As an application of Theorem 2 we give two examples of matrix \aleph -rings.

EXAMPLE 1. (This is a generalization of Kaplansky's example [3, p. 526] and [4, Example 3, p. 604].) Let J be any set such that $\overline{J} \ge \aleph$. Let $\{D_{\alpha}\}_{\alpha \in J}$ be a family of division rings and F_{α} a proper division subring of D_{α} for every $\alpha \in J$. Consider the functions f which map each element $\alpha \in J$ into an element of D_{α} and such that, if $J_f = \{\alpha \mid \alpha \in J, f(\alpha) \notin F_{\alpha}\}, \overline{J}_f \le \aleph$. Then the ring \mathfrak{R} of such functions under the natural definition of addition and multiplication is a von Neumann ring. Applying Theorem 2 it is easily seen that \mathfrak{R} is a matrix \aleph -ring, but, if $\overline{J} > \aleph$, \mathfrak{R} is not a matrix \aleph' -ring for any $\aleph' > \aleph$.

EXAMPLE 2. Let \mathfrak{B} be an \aleph -complete Boolean algebra and X its dual space, that is, X is the space of the Stone representation. Then X is a totally disconnected, compact, Hausdorff space. Consider the functions f over X with values in a Galois field F satisfying the condition: for every $a \in F$, the set

$$X_a = \{x \mid x \in X, f(x) = a\}$$

is a clopen set of X. Then, under the natural definition of addition and multiplication of a function, such functions form a matrix \aleph -ring.

References

1. I. Amemiya and I. Halperin, Complemented modular lattices, Canad. J. Math. 11 (1959), 481-520.

2. I. Halperin and M. J. Wonenburger, On the additivity of lattice completeness, Pacific J. Math. (to appear).

3. I. Kaplansky, Any orthocomplemented complete modular lattice is a continuous geometry, Ann. of Math. (2) 61 (1955), 524-541.

4. Y. Utumi, On continuous regular rings and semi-simple self injective rings, Canad. J. Math. 12 (1960), 597-605.

5. J. von Neumann, Continuous geometry, Princeton Univ. Press, Princeton, N. J., 1960.

QUEEN'S UNIVERSITY

1963]