MATRIX N-RINGS
MARIA J. WONENBURGER!

1. If ® is a regular ring with unit element, the lattice Zg(Rg) of
principal left (right) ideals ordered by inclusion is a complemented
modular lattice and the lattices Ly and Ry are dual isomorphic,
[5, Part II, Chapter II]. ® is called an N-ring if Ly is N-complete
and N-continuous and when ® is an N-ring for any cardinal number
N, ® is a von Neumann ring.

The ring ®. of #Xn matrices with entries in ® is regular if ® is
regular, but the fact that ® is an R-ring does not guarantee that ®,
is also an N-ring. If ®, is an N-ring (von Neumann ring) for every
positive integer #, we say that ® is a matrix N-ring (von Neumann
ring). In the present note we give a necessary and sufficient condi-
tion for an N-ring to be a matrix N-ring, and two examples of matrix
N-rings.

As a consequence of the additivity of upper N-continuity in -
complete, complemented modular lattices (see [1, Theorem 4.3])
and the additivity of N-completeness under certain conditions it was
shown in [2] that ® is a matrix N-ring if ®; is an N-ring [2, Corol-
lary 3 of Theorem 3.1].

2. In what follows ® denotes a regular ring with unit element,
(#); and (u), are the principal left and right ideal, respectively, gen-
erated by #E®. Q denotes an ordinal number and  its cardinal
power.

It is convenient to think of Ly as the lattice of finitely generated
submodules of the left ®-module of ordered pairs (ai, a2), a:E®, [5,
Part 11, Chapter 11, Appendix 3]. {(ai, a;)} will denote the submod-
ule generated by (a1, as). A finitely generated submodule M of the
left ®-module of ordered pairs admits a canonical basis, that is,

M = {(e,0)} ® {(a,N},

where e?=e¢, f?=f, fa=a, ae=0 and @ means direct sum. The sub-
module {(e, 0)} is uniquely defined by M since it is equal to
Mf\{(l, O)}, that is, {(e, O)} is the submodule of elements of M
whose second component is zero.

Our first step is to find a decomposition of M where the submodule
MN { (0, 1)} also appears explicitly.
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LEMMA 1. Any finitely generated submodule M of the left ®-module of
ordered pairs (a1, as), a:E®R, can be decomposed in the following way

M = {(e1, 0)} @ {(a1, a2)} ® {(0, )}
where €; = e;, @161 =az0:=0 and (a1).= (@)

Proor. Let U be the involutorial automorphism of the left ®-
module of ordered pairs which takes the vector (a, b) into (b, a).
U takes a finitely generated submodule into a finitely generated sub-
module and defines an involutorial automorphism T of L.

Suppose M= {(e1, 0)} & {(a, f)} under a canonical decomposmon
Then e,6=0, fa=a. Taking a canonical decomposition of

-ﬁ{(d,f)} = {(f’ a)} = {(62’ 0)} 5] {(a'?: (11)},
€2 =e, ase2=0 and (a,);= (a);. Therefore
= {(e, 0)} ® {(a1, a2)} ® {(0, e2)}.

Since MN{(0, 1)} ={(a, /)}N{(0, 1)}, it follows that MN{(0, 1)}
= {(0, ) {. Because a;=xa and ae; =0, we have a,6,=0. Moreover,
{(al, ag)}f\{(O, 1)} = {(al, az)}f\{(l, 0)} =0 implies that the left
annihilators of @; and @, coincide, hence (a,),= (as),.

3. The next point which we need to emphasize is the fact that a
left factor-correspondence ([S, Part II, Definition 15.1], notice that
this definition of f.-c. is for right principal ideals which we call right
factor-correspondence) between (u); and (v); can be determined by
a pair of elements of ®. This fact is an immediate consequence of the
definition of factor-correspondence and its precise statement is given
in the following lemma.

LEMMA 2. A left factor-correspondence between (u); and (v); is com-
pletely determined by any pair of elements u', v E® corresponding to
each other and such that (u')1=(u), and (v');=(v);. Conversely, if (u'),
= (v'),, the one-to-one mapping

2 o x, xEQ,
defines a factor-correspondence between (u'); and (v'),.

The factor-correspondence deﬁned by the pair %, v will be denoted
by (u:9).
We introduce an order in the set of factor-correspondences by de-
fining
(u1201) = (uaivo)

if (#1)1D (u2); and us and v, correspond to each other in (u;:7;).
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THEOREM 1. Let R be a regular ring such that Im is upper N-complete
and upper N-continuous. Then the lattice LG{ is upper N-complete if
and only if every increasing chain (u*:v%), a<9 and Q=N, of left
factor-correspondences has a supremum. Moreover, if L(R, s N-complete
it is upper N-continuous.

ProoF. The last statement is an immediate consequence of the
theorem of Amemiya and Halperin on the additivity of upper N-
continuity is complemented, N-complete modular lattices, (cf. [1,
Theorem 4.3]). For, Lg,=1[0, {(1,0)}\U{(0, 1)}]and [0, {(1,0)}]
is isomorphic to L.

Assume that L(R is upper N-complete and let (#*:9%), a<Q and
Q@ =N, be an increasing chain of left factor-correspondences. Then the
modules M= = {(u"' v") form an increasing QQ-chain. Since

N {1, 0} = ©, 1} =0, (U(M“Ia <)) N {1}
—(U(M“|a<9))f\{(l 0) =0, because Lg, is upper N-continuous.
Therefore, by Lemma 1, U(M“|a<9) ={(u, v)} with (),=(v), and
it is clear that (u:9) is the supremum of the (u*:v%).

So we assume now that, if @<N, every increasing Q-chain of left
factor-correspondences has a supremum and proceed to show that
L, is upper N-complete. Let M= be an increasing Q-chain of modules
in Lg, and let

M= {(e, 0)} & {(a* 9}

be a canonical decomposition of the M=, If (e);= U((e“);l a<Q),itis
clear that the chain M= has a supremum if and only if the increasing
chain of Ne= M~\UJ { (e1, 0)} has a supremum. Now,

Ne = {(61, 0)} ® {(b“,f“)}

with b*=a*—a%¢, is a canonical decomposition of N* and we only
need show that the chain of modules {(b%, f*)} has a supremum.
This chain is actually increasing, for { (b2, f")} C N8 for a« =8 implies
that

(6, f%) = di(es, 0) + da(8%, f%) = (der + dabP, dofF),
hence b2 =d.b8, because b7e;=0 for all ¥ <, and consequently (b2, f*)
=d,(b%, f¥). By Lemma 1,
) (@) = {ey, )} @ {0, en)},
where bge=0 and (b%),= (b2),. Now { (8%, f)}N{(1, 0)} =0 implies
(69)iN(ed)1=0 if < B; for it follows from d,b3 =dses that

(@8, 0) = du(B5, b) — (0, ) C {(bﬂ, 7 )}
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hence dib5=0 and consequently dib5=0, since (b7),=(b3),. If (e2):
=U((e§):| <), then, by the upper R-continuity of Lg,

) ()1 M (b2); = O.

The increasing chain defined by the modules (1) has a supremum
if and only if the increasing chain defined by

Pa = {(b‘;) b:)} + {(07 62)}

has a supremum. Now (2) implies P“f\{(l, 0)}=0, hence, by
Lemma 1,

P = {(a1, 82)} ® {(0, es)},

where age;=0 and (a9),=(a3),. It is easily seen that the modules
{(@?, a3)}, @<Q, form an increasing chain; therefore (af:a5) is an
increasing chain of left factor-correspondences. Let (ai:a;) be the
supremum of this chain, then

{(a1, a0} @ {(0,e2)} =UP*| « < @) = U{ (b ™} | € ).

THEOREM 2. Let ® be an N-ring. Then Ry is an N-ring if and only if
every increasing Q-chain of left or right factor-correspondences has a
supremum when Q=N.

Proor. This is a consequence of Theorem 1 and the dual isomor-
phism between Lg, and R,

COROLLARY 1. Any complete rank-ring ® is a matrix von Neumann
ring. (See [5, Part 11, Definition 18.1].)

Proor. Given any increasing chain of left factor-correspondences
(u=:v%), <, the u can be chosen to be idempotents. Let R denote
the rank-function. Since R(«#) is a bounded increasing chain of real
numbers, we can replace the given chain by an increasing sequence
(uei: v2), 1=1, 2, - - -, with the same upper bound. Then we can
even assume that the % besides being idempotent satisfy wu*iu®i
=iy =y* for 1 <j (we only have to apply the construction in the
proof of Lemma 18.3 of [5] to the sequence 1—u=). Now, since
(uoi —ui)ui=y*(u* —u*) =0 and (% —u*)?=u%—u*,

R(uei — u%) = R(u*) — R(u=).
Therefore, by the completeness of ®, the Cauchy sequence wu®,
i=1,2, - - - hasalimit . On the other hand, R (v —v=i) = R(u®i — )

since v®i —v* and u® —u* correspond to each other under (u%i:v%).
Then, if limy., v*=v, (#:v) is the supremum of the given chain.
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COROLLARY 2. If ® is an N-ring and Ly has a large 2 basis, then
every increasing chain of left or right factor-correspondences in ® has a
supremum.

Proo¥. The corollary follows from Theorem 2 and [2, Corollary 2
of Theorem 3.1].

4. As an application of Theorem 2 we give two examples of matrix
N-rings.

ExampLE 1. (This is a generalization of Kaplansky’s example [3,
p. 526] and [4, Example 3, p. 604].) Let J be any set such that
T72N. Let {D.}a.es be a family of division rings and F, a proper
division subring of D, for every a&J. Consider the functions f
which map each element & J into an element of D, and such that,
if Jy= {a]aEJ,f(a) € F.}, Jy<N. Then the ring ® of such functions
under the natural definition of addition and multiplication is a von
Neumann ring. Applying Theorem 2 it is easily seen that ® is a
matrix N-ring, but, if 7>N, ® is not a matrix R’-ring for any 8’/ >N.

ExaMPLE 2. Let ® be an NR-complete Boolean algebra and X its
dual space, that is, X is the space of the Stone representation. Then
X is a totally disconnected, compact, Hausdorff space. Consider the
functions f over X with values in a Galois field F satisfying the condi-
tion: for every a € F, the set

X, = {z|x € X, f(x) = a}

is a clopen set of X. Then, under the natural definition of addition
and multiplication of a function, such functions form a matrix N-ring.
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