THE CLIFFORD ALGEBRA AND THE GROUP
OF SIMILITUDES

MARIA J. WONENBURGER

Let C(M, Q) be the Clifford algebra of an even dimensional vector space M
relative to a quadratic form Q. When Q is non-degenerate, it is well known
that there exists an isomorphism of the orthogonal group O(Q) onto the group
of those automorphisms of C(M, Q) which leave invariant the space
M C C(M, Q). These automorphisms are inner and the group of invertible
elements of C(M, Q) which define such inner automorphisms is called the
Clifford group.

If instead of the group O(Q) we take the group of similitudes v(Q) or even
the group of semi-similitudes T'y(Q), it is possible to associate in a natural
way with any element of these groups an automorphism or semi-automorphism,
respectively, of the subalgebra of even elements C+(M, Q) C C(M, Q). Each
one of the automorphisms of C+(M, Q) so defined can be extended, as it is
shown here (Theorem 2), to an inner automorphism of C(M, Q), although
the extension is not unique. A semi-automorphism of Ct(M, Q) associated
to a semi-similitude of Q can be extended to all of C(M, Q) if and only if
the ratio of the semi-similitude satisfies the conditions given in Theorem 3.
Although the extension is not unique, Theorem 3 gives all the possible ex-
tensions. We do not know if there exist semi-similitudes whose ratios do not
satisfy the conditions of Theorem 3. In particular, Theorem 2 asserts that
the conditions do hold for the similitudes. This gives a new proof of a result
of Dieudonné (cf. (6) and the corollary of Theorem 3).

In the case that the characteristic of the ground field K is # 2, we show
that C(M, Q) can be expressed as a direct sum of certain subspaces. This
permits us to consider C(M, Q) as a graded space. In I1, we use this gradation
to characterize the automorphisms of C(M, Q) associated with the similitudes
and to characterize the semi-automorphisms of Ct(M, Q) associated to the
semi-similitudes (Theorem 4).

In 111 we use our characterization of such automorphisms to define what
we call the extended Clifford group. Then we apply to the elements of this
group the usual definition of spin-norm. In this way we obtain a mapping of
the extended Clifford group into the centre of the algebra C+(M, Q).

If S is a similitude of ratio p, p715% is an orthogonal transformation. We
determine the spin-norm of this orthogonal transformation using the mapping
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mentioned above (Proposition 1). In the same way we find the spin-norm
of the commutator of elements of the group of similitudes (Proposition 2).
These results can be used when the Witt index of the quadratic form Q is
> 0, to prove that the commutator group of the group of similitudes coin-
cides with the group generated by the elements of the form p=.5? (Theorem 3).
Theorem 5 also gives necessary and sufficient conditions for this to hold true
for the group of proper similitudes.

1

The well-known results on the Clifford algebras, (3; 7; 9), and the exterior
algebras, (1; 2; 4), will be used, and computations with the elements of thesc
algebras will be made assuming that the reader is familiar with them. How-
ever, it has been considered convenient to start with the general definitions
of these algebras.

The Clifford algebra. lLet M be a finite dimension vector space over a
field K of characteristic # 2, Q a quadratic form on M. The Clifford algebra
C(M, Q) relative to Q is the factor algebra of the free algebra

FM)=KOMOM®... @ M, ® ...

where M, = M @ xM®x ... Qx M ¢ times, by the ideal 7 generated by
the elements x ® x — Q(x). That is C(M, Q) = F(M)/I and it is an algebra
over K.

If dim M = #n, the algebra C(M, Q) has dimension 2" and given any basis
Xy, X2, ...,%, of M the coset x;xs?...x,%, ¢; = 0,1, of the elements
9 ® x22 Q... Q x, € F(M) form a basis for C(M, Q).

The free algebra F(M) has a main antiautomorphism of order 2 which
carries the element

Xy @xu ® ... Qx;, nto x;, @ ... R xy.

Since this antiautomorphism leaves invariant the generators of 7, I is in-
variant under it (as an ideal), and therefore it induces an antiautomorphism
in the Clifford algebra which we denote by * and call the main antiautomor-
phism of C(M, Q).

F(M) can be made into a graded algebra il we define the degree of an
element a € M}, to be k. It also can be made into a semi-graded algebra, that
is, an algebra with a gradation in which the set of indices is the group with
two elements {1, — 1} (cf. 4, chapter 1). The elements of degree 1 or positive
elements form the subalgebra F*(M) = K(= M) ® M, @ ... ® M., ® ...
and the elements of degree — 1 or negative elements form the subspace
F*<M)=M1(‘BIW3@...®M21‘+1®... .

The ideal 7 is generated by elements of /7*(M), therefore I is homogeneous
under the semi-gradation and can be written as [ = I* @® /-, where
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It =INFt(M), I- =1N F(M). It follows that the Clifford algebra has
a structure of semi-graded algebra, namely,

C(M,Q) = FIM)/I = Fr(M)/I* @ F-(M)/I- = C*(M, Q) ® C-(M, Q).

The exterior algebra. When the quadratic form Q is identically 0, the
ideal I, generated now by the homogeneous elements x ® x, is homogeneous
under the gradation of F(M) defined before. It follows that the factor algebra
E(M) = F(M)/I is a graded algebra with the same set of indices; however,
in this case the subspaces of degree s > #n = dim M are 0. Therefore E(M),
the exterior algebra of M, is the direct sum of its subspaces of degree 0, 1, ..., n;
that is, E(M) = K ®E @ E:® ... ® E,, where E, is the subspace of
elements of degree r, and K = E, that of elements of degree 0.

A linear isomorphism of E(M) onto C(M,Q)®. If x1,%y, .. .,%x, € M
we define the element [x;...x,] € C(M, Q) inductively by
[x] = x
[x1 ce J)Cgk_lx%] = [[x1 ‘e xgk_l], x%] ([(Z, b] = aqb — ba)
[x1 PO xgkxng] = {[xl e ka], x2k+1} ({(1, b} = ab + ba)
LeEMMA 1. The function [x1...x;] vanishes when any two of its arguments
are equal.
Proof. Since the function is multilinear it suffices to show that [x1. . . x,_sxx]

= 0. This follows from the following two calculations

{a, x}, x] = (ax + xa)x — x(ax + xa) = ax® — x%a = Q(x)a — Q{x)a = 0,

{la, x], x} = (ax — xa)x + x(ax — xa) = ax® — x% = 0.
LEMMA 2. The space spanned by 1 and the [x1 . .. x.] 15 the whole of C(M, Q).

Proof. Let y1, y2, - . ., ¥ be an orthogonal basis for M with respect to the
bilinear form associated to Q. Then one proves by induction that
Wayu .o ¥l =27 YaYu ... ¥y

if the 7, are different. This implies the lemma.

TuroreM 1. There is a linear isomorphism of the exterior algebra E(M) onto
C(M, Q) sending 1 into 1, x1 A ... A %, into [x1...x.]. If My denotes the
subspace of elements (xy,..x,] in C(M, Q), image of the subspace E,, then
CM,) =K®Muyu®Mu®...0 M.

Proof. Since [x1 ... x,] is multilinear we have a linear mapping of the free
algebra F(M) into C(M, Q) sending 1 into 1, 1 @ ... @ x, into [x1...x].
By Lemma 1 this induces a linear mapping of the exterior algebra E(M)

] am indebted to Professor Jacobson for this definition.
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into C(M, Q). By Lemma 2 this mapping is onto C(M, Q). Comparison of
dimensionalities shows that this is an isomorphism which gives

CM,Q0) =K ®Mn®Mau®... 0 Mp.

Since E; = M and under the linear isomorphism E is isomorphically
mapped onto My, this space is identified with M.

DErinNiTION 1. If an element of C(M, Q) belongs to My 1t will be said that
it has degree r. The field K is considered as M.

Under this gradation C(M, Q) is not a graded algebra but a graded vector
space over K, and C+(M, Q) =K ® M2 ® ... ® Mo if dim M = 27 or
2r + 1.

Let v1, ¥s, ..., % € M span the subspace ¥ C M, and 2, ..., 3 the sub-
space Z C M. Then y1 A ... Ay, =azi A ... A3z, a €K, il and only if
V = Z. Therefore [y1...5,] = alz1...2ifand only if ¥ = Z, which implies

LEMMaA 3. If y1, %2 ..., ¥ aud 21, . . ., 2, are orthogonal bases for Y and Z,
respectively, Yivs ... v, = az1...z of and only of ¥V = Z.

11

DEFINITION 2. 4 transformation T of an algebra onto itself will be called a
semi-automorphism relative to o of T is an automorphism of the algebra con-
sidered as a ring, that is

(a+b)%=a%*4 573 (ab)® = a®b2,
and it 1s a semi-linear mapping relative to the automorphism o of K with respect
to multiplication by elements of K, that 1s, (aa)® = a®a®. In particular if the
algebra has an identity o = (al)® = o’ = a°.
If the automorphism o s the identity, T will be called an automorphism.
If (S, o) is a semi-similitude of Q of ratio p, that is, a semi-linear trans-
formation of M onto M, relative to the automorphism ¢ of K, such that

QxS) = pQ(x)” (cf. 1, chapter 1), there exists a semi-automorphism = of
Ft (M) relative to o, associated to (S, ¢) and defined in the following way

V1 ®y:® ... 0 ¥)2=p""1:S) @35®...® y:,5.

Under this automorphism I+ is changed into itself. To prove this it is
sufficient to take elements of the form

d=91®5:1®..950ulzQ...Qz
where » + s = 2t and 4 = x ® x — Q(x). Then

dZ2=p (1) ® ... 035 xS ®xS®zS® ... ® 2.5
— Q) IS ® ... 9S®aS® ... d zS.

Since p71(xS) @ x5 — Qx)? = o1 (xS ® x5 — QS)) = p~lw & It
A =p (19 ®... 35 ®z25Q ... Q2.5 € It
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Therefore T induces a semiautomorphism in C+(M, Q) which will be called
the semi-automorphism associated to (S, ¢). This is a semi-automorphism
relative to ¢. The image under this semi-automorphism of the element
XiXo ... xop 18 o (21S) (x2S) ... (xanS). If x1, ..., x9 are orthogonal vectors
so are the vectors x:S, ..., x2,5. This implies that = takes My, into itself
and therefore 2 is homogeneous of degree 0. From now on we are going to
assume that Q is non-degenerate.

If dim M = 2r, M2, is one dimensional. Let 0 3£ ¢ € Mo, then e = ae.
Since e2 = § € K, 6 = (e9) T = (e?)? = a%. When ¢ is the identity, (S, o) is
called a similitude, Z is an automorphism and one must havea? = 1,¢% = L e.
A similitude is proper (improper) if ¢e¥ = e(e* = — ¢). The proper similitudes
form a subgroup y* of index 2 of the group v of similitudes; the improper
similitudes v~ form the other coset.

THEOREM 2. Any automorphism Z of CT(M, Q) associated to a similitude S
of Q can be extended to an inner automorphism of C(M, Q).

Proof. It follows from their definitions that, if xS = «(xS;), the auto-
morphisms of C+(M, Q) associated to .S and Sy are equal. Therefore when M
is odd dimensional the automorphism 2 is equal to the automophism associated
to a rotation U (cf. 7, chapter 11, § 13). The rotation U defines an inner
automorphism of C(M, Q) which induces on C+*(M, Q) the automorphism
2 (3, 2.3).

If dim M = 2r and S is proper the automorphism Z leaves invariant the
centre of CT(M, Q), Z = K + Ke, therefore it is an inner automorphism of
CH(M, Q) and can be extended to an automorphism of C(M, Q).

If S is improper and xi, xs, ..., X2, is an orthogonal basis for M, let us
take the proper similitude .S’ defined as follows

x.8 =x.Sfor2=1,2,...,2r — 1, and %35 = — x,5.

)

The automorphism X’ associated to S’ is inner and let # € C* be such that
¢? = ucu and take v = xxs...x2 1 € C. Then vu defines an inner auto-
morphism of C which induces on C* the automorphism Z.

THEOREM 3. Let T be a semi-automorphism of the algebra Ct (M, Q) associated
to the semi-similitude (S, ¢) of ratio p. Then

(1) of dim M = 2r + 1, T can be extended to a semi-automorphism of
C(M, Q) if and only if p = u2 Then if x € M, x* = uy=1(xS) or — w1 {xS).

(i1) of dim M = 2r, T can be extended to C(M, Q) if and only if p =
N(a + Be) = (o + Be)(a — Be). Then, if x € M,x% = p~1(xS) (a + Be).

Proof. Let x1, %9, ..., %, be an orthogonal basis of M, ¢ = x;...x, and
8 = Q(xy)...Q(x,). Since the algebra C(M, Q) is generated by x; and
X1X9, X1X3, . . . , X1X,, given a semi-automorphism of C* it would be possible
to extend it to C if and only if we can find an element ¢ § C* which anti-
commutes with (xx;)% ¢=2,3,...,n and whose square is equal to
(212) 2 = Q(x1). For, if the extension exists x;% has all these properties and
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conversely if there exists a ¢ with these properties the map taking . = u* 4+ 4~
=yt + xt, where ut, vt € Ct, u= € C7, into u® = (") E + ¢(v") 2% can
easily be seen to give a ring endomorphism of C(M, Q).

The image of C that we get under this endomorphism has dimension greater
than dim C* = } dim C. Since Cis either simple or a direct sum of two simple
algebras of equal dimension, the defined endomorphism is onto and hence a
semi-automorphism of the algebra C.

The element xS certainly anticommutes with (xx,) 2% = p~1(x.S) (x.5),
1= 2,...,n If another element ¢ also has this property ¢(x1.S) commutes
with all the (xwx;)® and therefore with C+. Hence ¢(x.S) = o + fe,
c = (QC1S) (a + ,36)

(i) If dim M = 2r + 1 and the extension exists x;% = ¢ = (x,.5)(a + Be)
and (x1%)* = (@15)* (e + Be)* = pQ(x1)7(a® + 2a8e + (— 1)78%) = Q(x1)* =
(x:%) ¥ which implies that either « = 0 or 8 = 0. But if « = 0, (x,S)Be € Ct
and we do not get a semi-automorphism. Hence 8 = 0 and pa® = 1, that is,
p=p?and x1% = p71(x.S) or x1% = — ul(x.9).

Suppose x;% = uH(xpS), then if x € M, x% = (Q(x1)x:1(xx)) > = Qx)™°
pH(x1S8) o1 (x1S) (xS) = u1(xS), that is, x ¥ = u~1(xS).

(1) If dim M = 2r and the extension exists (x;%)? = ((x.5)(a + Be))?
= (x:5)*(a — Be) (@ + Be) = pQ(x1)7(a* — (— 1)78%) must be equal to
(1) % = Q(x1)°. Hence pa?— (— 1)"8%) =1 and therefore p = (pa)?
— (= 1)7(pB)% = (a1 + B1e) (a1 —~ Bie) = N{oy + B1e), where oy = ap, B1=0p
and N («; 4+ B8ie) means the norm of a1 + Be.

Then if p is a norm, say p = N{a + Be), taking x;:Z = p~1(x:5) (o + Be) we
get an extension of T and for any x € M we have x% = p~1(xS) (o« + Be).

Combining the result (ii) with Theorem 2 we get the

CorOLLARY. When dim M = 2r, the ratio of a similitude is of the form
p=Na+Be) =a+ (—1)718% (cf. 6).

Up to now it has been seen that to any semi-similitude (S, ¢) can be associ-
ated a semi-automorphism of C+(M, Q) relative to ¢ which is homogeneous
of degree 0. If o is the identity S is a similitude and we have an automor-
phism.

Our purpose now is to prove that any semi-automorphism of C+(M, Q)
which is homogeneous of degree 0 is a semi-automorphism associated to a
semi-similitude. If the semi-automorphism is an automorphism it is associated
to a similitude. In fact, it is sufficient to assume that the semi-automorphism
takes Mg into itself to deduce that it is associated to a semi-similitude.

The proof will be decomposed into steps which we present as lemmas.

LEMMA 4. Any element ¢ € My whose square is an element of K different
from zero is the product of two non-isotropic orthogonal vectors of M.

Proof. Let x1, xs, . . ., x, be an orthogonal basis for M. Then xxs, 123, . . .,
X1Xn, X2X3, . . . , Xp 1%, fOorm a basis of M.
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e 2 M, e = 2 icjoixix; Because we assume that ¢2 = p % 0, ¢! = ulc.
We are going to prove that ¢ belongs to the Clifford group, that is, the inner
automorphism defined by ¢ leaves invariant the subspace M. It is sufficient

to prove that for x,, 2 = 1,2,...,n, ¢ lx,c € M.
Since
j=n i<h
XpC = Xy Z QX X5 = < Z X X; — Z Ay jXpXy — Z aihxixh> X5
i<j 1,07%h i>h i=1
Jj=n i<h
= <5 -2 Z QXX — 2 Z aihxixh> R
>h i=1
J=n i<h
Culx"c = Cl<5 -2 Z oy jXpX 5 — 2 Z aihxixh> Xy
>n i=1
J=n i<h
= #_IC<5xh + 2Q(x) Z>h Xy — 2Q(x) -21 QX i> = d + d
7 i=

where d[]] E ﬂ[ leld d[;;] E AI[;;].

Now from (c7'%,0)* = (ulexp0)* = ulcx,c = ¢ x,c follows (c7lx,0)* =
(diyy + di)* = dpy — dpz) = diy + disy and dig = 0. Therefore ¢ 'x,e € M
and defining xG = ¢~ 'x¢ for any x € M, G is an orthogonal transformation.
Moreover G is a proper orthogonal involution since ¢ € My C C* and
¢ = pu.

If U is the minus space of G (cf. 8, 1.2, Lemma 2), it has even dimension,
Let vi1, ¥2, . . ., ¥» be an orthogonal basis of M such that the 2r first vectors
form a basis of U. When M is even dimensional any element of the Clifford
group defining an inner automorphism which induces on M the rotation G
has the form vyyy: ...y, v € K (3, 11.3). Therefore ¢ = yy1y2. ..y and
since ¢ € My, 2r = 2 and ¢ = yy1y: = y'v2. When M is odd dimensional,
let e = y1¥2... Vs then ¢ = (a 4+ Be)y1yz...ys, but, since ¢ € My and
eyiVe . .« Yo, = Vori1. .- Yo & M9 # Mis because n — 27 is odd, g = 0,
and ¢ = ayy: = y1'¥2

LEMMA 5. Let v1 and v, be two non-zero vectors of M. Then y1y. ¢ K if and
only if y2 = ayi.

Proof. The linear isomorphism of E(M) onto C(M, Q) defined in Part 1,
takes y1 A v2 € Es into [viyvs] = y1ye — y2y1 € M3 On the other hand
y1y2: + yey1 = (¥1, ¥2) € K, where (y1, ¥2) is the bilinear form associated to
Q. Then 2yyys = [yva] + (v1, ¥2) € My + K. Since we assume that y;y: € K,
[vy2] = 0; therefore y; A ¥, = 0, which implies y; = ay;.

DEFINITION 3. The vectors of a set are called properly independent (p.i.) if
they are mon-isotropic and orthogonal to each other.

LEMMA 6. Let x, v and u, v be two pairs of p.i. vectors. Let Py, and Py, be
the two planes spanned by x and y, and u and v, respectively. Then xy and uv
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anticommute if and only tf Py, M Py, = Kz, and the space Kz is non-isotropic
and its orthogonal complement in Py, is orthogonal to P,

Proof. The plane P,, is non-isotropic. Therefore M = P,, ® P,* where
Py, is the orthogonal complement of P,, In this decomposition of M,
x=c¢1+d,y=c¢ +dsyc; € Py, d; € Py, which implies that d; commute
with uv and ¢; anticommute. Hence if xy and uv anticommute

xyuy = {(¢1 + di){c2 + do)uv = uv(— ¢y + d1)(— ca + da)
xyuy = — uvxy = — uv(c; + dy)(ca + da).

Since uv has an inverse we have

(—er+d)(—cotdo) = — (c1+ di)(ce + ds) or 2(cice + duda) = 0.

But ¢cs belongs to the subalgebra over K, 4, generated by « and v; did»
belongs to the subalgebra over K, B, generated by the vectors in P,,,, and
A M B = K. Therefore cics + dids = 0 if and only if cics = u, dide = — 4,
u € K.

Case I. Suppose ¢y, ¢q, d1, d» are all different from zero. Then by Lemma 5
¢ = acy, d» = Bd;. Therefore x = ¢; + di, y = ac; + Bd; and since (x,y) = 0
we get xy = (8 — a)cidy. This implies, by Lemma 3, P,, = P, and therefore
¢1 € Py, Pyy Pr = K¢y and the orthogonal complement of ¢; in Py,
d; € Pt

Case I1. Suppose one of the vectors cy, ¢s, d1, ds, 1s zero, let us say d» = 0.
Since y # 0, ¥y = ¢ # 0, Q(c2) = Q(y) # 0. But then cics + did, =0 is
reduced to cicz = 0. Because Q(cz) # 0, ¢z has an inverse and ¢yc; = 0 implies
¢1 = 0. Therefore x = di, y = ¢oy Puy (O Py, = Kcp and the orthogonal com-
plement of Kc¢o i1 Pyy is dy € Pt

In the same way, if ¢» = 0, we get d» # 0, Q(d2) # 0 and ¢z + didz = 0
reduces to dids = 0 which implies d; = 0, x = ¢, ¥y = da.

Conversely, if the space spanned by x and y contains two non-isotropic
vectors x’ and 3’ such that ¥’ € P,, and 3y’ € P,,*, ¥’ anticommutes with uv
and ¥’ commutes with it. Therefore xy = ax’y’ anticommutes with u.

LemMA 7. Let x1, %2, . . ., Xn be an orthogonal basis of M. Then under any
semi-automorphism Z of C(M, Q) or CH(M, Q) taking xixs, x1%3, . . . , X1%, 1t0
elements of Mz, the images of these elements can be written in the form y. ys,
VU Vay oo vy VU Vny Where Y1, Y2, o .., Yo are p.a. vectors.

Proof. By hypothesis (x1x;) 2 = Zpejonxnx,, and since 0 # (xx,)? € K,
(Zapmnx,)? € K.Henceby Lemma 4 (xx,) 2 = ¢;2;, wheret;, 55,7 = 2,3,...,n
are p.i. vectors.

Since #325 and f3z3 anticommute, by Lemimas 6 and 3, ¢32; = (atz2 + Bz2)ys
and fs, 29, y3 are p.i. and y{ = (ats -+ B29) is determined up to a scalar factor.
By Lemma 3 we know that £z, = y1'y: where vy, = o't2 + 822 and y{/, 2, 3
are p.i.
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Let us consider ¢;z; 7 # 2, 3. Since it anticommutes with (xx2) 2 = y1y;
and (xws)* = y1'y3 we have tiz; = (@’ + Bys)u = (a/y) + B/ ys)v where
1, ¥, u are p.i. and so are yy, v, v.

Applying again Lemma 3 we get

plays + Bys) +vu = a/y) + By
v #0, u =258y’ 4 8y + 8;y; and

(xlxi)z =18 = (Oliyi + /3iyz)u =y + ’Yzy/1y2 + ’Yay'ﬂ’a + vay2ys

o-1 o—1 o—1 =1 -1
= (’71 + v2 xixe + vs x1x3 — Q(yl) Y4 x1x3x1x3)2

where ¢ is the automorphism of K related to Z. But this contradicts the fact
that £ is a semi-automorphism because 1, xixs, x1x3, Xox3, X1x; are linearly
independent.

Therefore v = 0 and 8; = 8, = 0 for v/, y, ys are p.i. If we write a,u = v,
we have (xx;) ¥ = yi'y; and v/, ¥2, vs, ¥; are p.i.

To prove that yi, ¥y ..., y, are p.d. it is sufficient to show that they
form a set of pairwise orthogonal vectors, for since they are non-isotropic
this would be impossible if they were not independent.

We know that v,’y, are p.i. and v/, y, are p.i. Besides if 7 > j y,/y; and
¥1'y; must anticommute; then by Lemma 6 y; and y, are orthogonal.

THEOREM 4. Any semi-automorphism 2 of CH(M, Q) mapping My into
Mgy s associated to a semi-similitude. Moreover, if Z is an automorphism it is
assoctated to a similitude. If dim M > 2 the semi-similitude is defined by Z up
to a scalar factor. '

Proof. The elements 1, x1xs, X1X3, ..., %1%, Where xi, xe,...,%, i$ an
orthogonal basis of M, form a set of generators of C*(M, Q) over K. By
Lemma 7 this set of generators is taken by Z into 1, ¥1'y2, ¥1'¥3 . . ., Y1’V
where v, ¥s, ..., ¥, are p.i. and the y," and therefore the v,'s are defined
up to a scalar factor, when dim M > 2,

Let p = Q(y1)7'Q(x1)?, then

(k)% = — Q(x1)°Q(x)" = ((xxs) H)? = W'y = — Q(3"NQ(yy)
and hence
Q) = pQ(x5)" 1=2,3,...,n

Take v1 = py/, then Q(yi) = p20(¥)) = pQ(x1)° and define the semi-
similitude (S, 0): Sax; — Zay,.

The semi-automorphism of Ct(M, Q) associated to (S, s) takes xyx,; into
p~Wwry: = vy, and since it coincides with £ on a set of generators over K
both semi-automorphisms are equal.

COROLLARY 1. When dimy M > 2, there extists an isomorphism between the
projective group of semi-similitudes (similitudes) and the group of semi-auto-
morphisms (automorphisms) of Ct(M, Q) leaving invariant the subspace M.
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This 1somorphism takes the projective group of proper similitudes onto the group
of inner automorphisms of CH(M, Q) leaving invariant Miy.

The last part of this corollary is a consequence of the proof of Theorem 2.

CoroLLaRrY 2. If dim M > 2, there exists a homomorphism between the
group of inner automorphisms of C(M, Q) leaving invariant the subspace My
and the projective group of similitudes Py(M, Q). The kernel consists of the
inner automorphisms defined by elements of the centre of C+(M, Q).

Proof. Any inner automorphism X of C(M, Q) taking M s into itself induces
an automorphism on C*(M, Q) uniquely associated to the coset of a similitude
S in Py(M, Q). The mapping of Z into the coset of S is a homomorphism of
the group of inner automorphisms of C(M, Q) onto Py(M, Q) by Theorem 2.
The inner automorphisiis which are mapped into the coset of the identity are
defined by the invertible elements of the centralizer of Ct(M, Q) in C(M, Q).
This centralizer is the centre of C*+ (44, Q),if dim M = 2r,and if dim M = 2r+1
it is the centre of C which defines the same inner automorphisms that the
centre K of C*, namely, only the identity.

Remark. With the exception of the case of the algebra C+(3/, Q) when
dim M = 4, any automorphism of C(M, Q) or C*(M, Q) considered as rings,
taking Mg into itself must take K into itself and therefore it is a semi-
automorphism of C(M, Q) or CH*(M, Q) considered as algebras.

111

The Clifford group T of C(M, Q) is the group of invertible elements which
define inner automorphism of C(M, Q) leaving invariant the space /. The
transformations induced on M for such automorphisms are orthogonal trans-
formations with respect to Q (cf. 3, 2.3). It is clear then that the clements
of T define inner automorphisms of C(M, Q) which are homogeneous of
degree 0, with respect to the gradation of C(34, Q) defined in part 1.

DEeFINITION 3. The extended Clifford group © of C(M, Q) s the group of
invertible elements s of C(M, Q) such that the inmer automorphism s 'cs leaves
invariant the space Mis.

We have seen in part 11 that the elements of 6 defined inner automorphisms
which induce on C* automorphisms associated to similitudes and therefore
these automorphisms induced on C*+ are homogeneous of degree 0.

It is clear that © O T and Theorem 3 (i) proves that when 47 is odd dimen-
sional © = T. Therefore the only interesting case is when dim M = 2r and
© properly contains T.

From now on it is assumed that dim M = 2r.

Any automorphism associated to a proper (improper) similitude takes anv
element ¢ € Mz into e(— e). Hence the inner autmorphism defined bv
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s € O 1s associated to a proper (improper) similitude if and only if s commutes
(anticommutes) with e, that is, s € 6t = 06N\ C*+ (6= = 6 N\ C).

Therefore if s € O either s € 6% or s € 0.

Let us recall that there exists a homomorphism A of T into the multipli-
cative group of invertible elements of the centre of C(M, Q). If s € T, the
value A(s) = ss* is called the spin-norm of s and also the spin-norm of the
orthogonal transformation of M taking x € M into xG = s~ xs.

Now we are going to study the values of A(s) = ss* for s € O.

Lemma 8. (i) If dim M = 4r 4 2, X(.) is a homomorphism of © into K.

(ii) If dim M = 4r, N(.) maps the elements of O into the centre Z of C*(M, Q).
The restriction of N(.) to OF is a homomorphism of O into this centre. Moreover,
As) € K if and only +f s € T.

Proof. When dim M = 4r + 2, ¢* = — e for ¢ € My, Let s € 0 and
x € M; the inner automorphism defined by s is an extension to C(M, Q) of
an automorphshim of C* associated to a similitude. Therefore by Theorem 3
(ii) svs = y(a + Be), vy € M and (s s)* = s¥x(s*)7! = (v{a + Be¢))* =
y(a + Be) = s~'xs, that is, s*x(s*)"! = s~ lxs, xss* = ss*x for every x € M.
Hence A(s) = ss* € K, the centre of C, and A(s152) = s1525%25%1 = A (s1)A (s52).

(i) When dim M = 47, ¢* = ¢, ¢ € M. Let xy, xs, . . ., x4, be an ortho-
gonal basis of M. Then s7xx;s = p~y;y; where y, = x,5, A = 1, ..., 4r and
S is a similitude of ratio p. Hence

(sTleacs)* = (plyy)* = — p7lyy; = — (sTlways);
(s7hex;8)* = — s*wcp;(sTH* = — sTlwags; st = x0085%,

that is, A(s) = ss* € Z and if sy, 52 € OF A(s152) = s1505%2s¥1 = A(s)A (52).

Assume now that A(s) =6 € K. Then, for any x € M, ss*x = xss*;
s7xs = s*x(s*)7 = (s7xs)*. But s7ws = y(a + Be) and (yv(a + Be))* =y
(@ + Be) if and only if 8 = 0 and s € T.

Consider a similitude of ratio p. We know by the corollary of Theorem 3
that p = N(a + Be) and by the theorem that the automorphism of C* associ-
ated to S can be extended to an automorphism T of C such that x% = p7!
(xS)(a + Be). This is an automorphism of the simple algebra C(M, Q) which
leaves the centre invariant. Therefore there exists an element s € O defined
up to a scalar such that s~'xs = p~1(xS) (o + Be) = (xS) (¢’ + B'¢) where
a = pla, ff = pBand N(a' 4+ B'¢) = p2V{(a + Be) = p~ L.

DEFINITION 4. An element s € O is said to be associated to the similitude S
with the factor a + Be if s7xs = (x5)(a + Be). When the factor is 1, we simply
say that s € T 1is associated to the orthogonal transformation S.

LeMMA 9. Let s € O be associated to S with the factor o + Be. Then s is
associated to S—t with the factor (a + Be)'[(a — Be)~'] #f s € OF[s € 67].
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Proof. (a) Let s € 01, x € M. Then s7! € 6 and xS—! = ss1(xS~1)ss™!
= sx(a + Be)s™t = sxs~ W a + Be); sxs7!l = xS (a + Be)~L

(b) Let s € ©=, x € M. Then s71 € 07, x5! = ss7 1 (xS Vss™! = sx(a+Be)
s7U= sxsHa — Be); sxs™!l = (xS (e — Be)~ L.

LemmaA 10. If dim M = 47 and s € O 1s associated to S with the factor a+Be,
then

(1) A(s) = ula+ Be) and A1) = py~ Y a + Be)~t if s € 6.

(i) A(s) = ule — Be) and A(s™Y) = uHa + Be)~! of s € O,

Proof. (1) When s € 0+, A(s) = ss* = o' 4 B¢ implies s7' = (o’ + §'e)~1s*.
Since (¢ 4 Be)"s*xs = (x5)(a + Be), s*xs = (*x5)* = (xS) (' — f'e) (e +
Be), that is, ((xS)(a’ — B'e)(a + Be))* = (a + Be) (o’ — B'e) (x5) = (x5) (&’
+ ) (@ — Be) = (x5)(a’ — B'e) (a + Be), (¢ + B'e)(a@ — Be) = (&' — B'e)(a
+ Be). This shows that if we define the automorphism —of K + Keasa + Se
=a — fBe, (& + B'¢)(a — Be) is invariant under this automorphism and
therefore is an element of K, hence o’ + 8’e = u(a + Be). As for s—! we have
AN = A(ss™!) = 1 so that A(s7) = u~(a + Be)~L

(i) When s € 67, A(s) = ss* =o' + B¢ implies s7! = (¢ — fe)Is¥,
therefore (o' — B'e)"ls*xs = (xS)(a + Be), s*xs = (s*x5)* = (xS) (' + B¢
(e + Be) which implies (¢’ + 8'¢)(a + Be) = (&' — B'e) (e — Be) € K and
o 4 f'e = ula — Be).

Now 1 = A(ss™!) = ss7I(s™H)*s* = A(s™ YN (s), therefore A(s~1) = p~ (o +
Be)~ L.

Let K’ be the multiplicative group of non-zero elements of K and K’?
the subgroup of squares of elements of K’. If an element s € T" has spin-norm
() € K2 say A(s) = u? A7) = u~(s) = 1. The elements s and u~ls
define the same inner automorphism and @ fortiori the same orthogonal
transformation on M. Conversely, if s and s’ define the same inner auto-
morphism on C(M, Q),s’ = us and A(s") = N (s)(K'?).

The group of elements of I'* = T' M C* of spin-norm 1 is a subgroup
denoted by Iyt and called the reduced Clifford group. When the index of
Q > 0 the commutator group @ of the orthogonal group coincides with the
group of orthogonal rotations associated to elements of T'q*. Therefore an
orthogonal transformation associated to an element s € T'" belongs to @ if
and only if \(s) = 1(K"?).

ProrosiTioN 1. Let S, be a stmilitude of ratio p and g € T be associated to
the rotation G defined by xG = p~'(xS,%), x € M. Then

@) If dim M = 4r + 2, AMg) = p(K'?) if S, € vt and Ng) = 1(K'?) 4+
S, € v~. When index of Q > 0,G € Qif and only if either S, € v~ or p = 1(K'?).

(i) If dim M = 4r, Mg) = V(K'Y f S, € vrand A (g) = p(K'?) if S, € v~
When index of Q > 0, G € Q if and only if either S, € v* or p = 1(K'?).

Proof. (i) Let s € 6% be associated to S, with the factor a + Be, hence
N(a + Be) = p~L. Then (s¥)7xs? = s71(xS,) (o + Be)s = (x5,%) (a + Be)? This
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implies that the element g{a + Be) defines the same inner automorphism that
s?, for, since N(a+ Be) = p7!, (o + Be)~'g7xg(a 4 Be) = pla — Be)glxg
(a + Be) = pla — Be)p™ ' (xS,) (e + Be) = xS,*(a + Be)™.

Hence s? = yg(a 4+ Be) and X(s?) = (A (s))? = »* = A(vg(a + Be)) = »*
p~\(g). Therefore A(g) = p(K’'?) and if p & 1(K'?), G§Q.

If s £ ©— is associated to S, with the factor & + Be, V(e + Be) = p~! and
(s~ es? = p71(xS,?). Therefore s = yg and A(s?) = 42\ (g) = »? implies that
G € Q if index of Q > 0.

(i) Let s € ©F be associated to S, with the factor & + Be, (s?)71xs? = s7!
(xS,) (@ 4+ Be)s = (x5,%) (o + Be)? and s* = yg(a 4+ Be). Then by Lemma 10
(i) N(s?) = sss*s* = p2(a 4 Be)?, and on the other hand A(s?) = N(yg(a +
Be)) = vgg" (a + Be) (a + Be)* = v*A(g)(a + Be)2. Therefore u?(a + Be)? =
Y2 (g) (o + Be)?, A(g) = 1(K'?), which implies that G € @ if index of ¢ > 0.

If s € 67, 57 2s? = p~1(xS,?) and therefore s? = vg. Hence A (s?) = \(yg) =
¥2A(g) and by Lemma 10 (ii) A(s?) = sss*s* = p?N(a 4 Be) = u? L which
proves that A(g) = p(K'?).

ProrositioNn 2. Let S,, S, be similitudes of ratio pi, ps respectively. Let
8g € T'T be an element associated to the rotation S, S, Sy~ Sy~ Then

ol S, €47

Mg) = pPp (K'?)  where e = )\1 S €y
pi

i=1,2.
Proof. Let sy, s» be elements of 6 associated to S,, S,, with the factors
a1 + Bie, az + Bee, respectively. We consider two different cases.

Case 1. dim M = 4r 4 2. Then A(sys25171s271) = 1. Suppose

(@) s1, 52 € OF, (51525171527 T lesysasiis0 7l = (2517 Lso™ )1 (xS,, ) sas1 tse T (e
+ Bie) = x5,,5,,5,71S,,7! by Lemma 9. Therefore sises171s:7! = g € T't and
A(g) = 1; g is associated to S,.S5,,5,, 7S, %

(b) 51 € OF, 55 € 07, (s18es17lss )" es18es17 507 = (85,5505, 78S 1) (1 +
Bie) (ar — B1e)~1. Therefore sises17lss™! = glas + Bie) and A(g) = p1(K'?).

(€) s1€ 07, 52 € OF, (s1se577 Ise™ )" wsisas17 507! = (5,,5,,5,,715,,71) (a2 —
Bse) (s + B2¢)~1. Hence sysesilso™! = glay — B2¢) and A(g) = p2(K'?).

(d) 51,52 € 97, (515251_152_1)*lv\':~5‘15‘~’51_152_1 = (xSmSPZSm_Isz_I) (al - Ble)
(az =+ Bae) (a1 + B1e)H(as — Bre)~t Hence 515051715971 = glar — Bie) (az + B2e)
Ag) = pip2(K™).

Case 2. dim M = 4r. In this case we apply Lemma 9 in the same way it
was done before, but we also need Lemma 10 to compute A(s1525;7 155371,

(a) s1, s2 € ©F. Since A(.) is a homomorphism of 0% into a commutative
group A(s1s2517 %57 Y) = 1 and the result is the same as that for the case 1 (a).
(b) s1 € 6%, 5o € 6. As before, s152577 1527 = glay + Bie).

Now  A(s152517 1597 = sysasy e Was 4 Bae) Is1¥s0%s* = o' (ay — Bae)™?

pray — Bie) us(as — Bee)ui(ay + Bie) by Lemma 10. Hence
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Melas + 6:0)) = M) (o + 8i0)" = {00

and A(g) = p1.
(€) 51 € 07,55 € OF. We know 515251 557! = g(ae — Bse) and by Lemma 10
A(s152517s571) = (a2 + Bae) M@z — B2e) = N(g)(az — B2e)2 Therefore X(g) =p
(d) 51 € ©7, 55 € O~ Then
_ (o — Bie)’ (et Bee)’
N(ar+ Bie) N(as + Bee)
and A(g) = pipe.

= Ag)(ar — Bie) (as + B2)*

A(s15257 53 )

COROLLARY 1. The centralizer of an improper similitude S, of ratio p in the
group of similitudes is generated by the scalar multiples of S, and of ¢ subgroup
of OF (the rotation group).

Proof. If T belongs to the centralizer of S, in v, S,7S,7'7-! = [ is the
identity, 1 € T is associated to [ and A(1) = 1. If T is a proper similitude,
applying the proposition, we get that the ratio of 7" must be a square, say,
a2 Then xT = o(xG) where G is a rotation.

If T is an improper similitude its ratio, by the proposition, must be of the
form «?p. Therefore the ratio of 7:.5,7! is «® which implies that x7 = «(xGS,)
where G is a rotation.

COROLLARY 2. No element of v~ belongs to the centralizer in the group of
similitudes v of a proper similitude S, of ratio p if p & 1(K'?).

COROLLARY 3. If the tndex of Q s greater than 0, the first commutator group
v’ of the group of similitudes v consists of the transformations of OF associated
to elements g € T'F such that N(g) = p(K'?), where p is the ratio of some similitude
of v. The second commutator group v'' = Q if dim M > 4.

Proof. Since the group @ C ¥ contains all the rotations defined by elements
of Tt, any rotation associated to an element g € I't with spin-norm
Mg) = p(K'?) belongs to v’ if ¥’ contains one with such a spin-norm. Propo-
sition 2 shows that if there exists a proper similitude S, of ratio p, S,US, 1 U~!
is a rotation with such spin-norm if U € y~.

Conversely, any element of 4’ is a product of elements of the form S,,5,,5,, 7!
S, lassociated toa g € T'tand by the proposition A(g) = p12p29 (K'?),e; = 0,1.
Hence the product of elements of such form is associated to a g’ € T+ with
spin-norm A(g’) = pip2...p: (K'?), where the p;’s are ratios of similitudes
and therefore pips ... p; is also the ratio of a similitude.

The last part of the corollary is a consequence of the well-known fact that
if dim M > 4, index of Q > 0 and F is any subgroup of the orthogonal group
O(M, Q) such that @ C F C O(M, Q) the commutator of Fis @ (cf. 5; 9).

In the proof of the next theorem we are going to use another known result
of the theory of orthogonal groups, namely: the commutator group € of the
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orthogonal group O(M, Q) is generated by the squares of the elements of
O(M, Q). If dim M > 2, the commutator group of the group of rotations is
also @, which is generated by the squares of the rotations.

THEOREM 5. Let v be the group of similitudes of M with respect to Q, index
of Q@ > 0, dim M > 2. Then the commutator group v’ of v is the group generated
by the rotations G of the form xG = p~'(xS,?), where p is the ratio of S,. The
commutator (v*) of the group of proper similitudes vt is equal to Q.

The rotations of the form G, xG = p~'(xS,2), S, € v+, generate

(1) v if dim M = 4r + 2.

(ii) @ if dim M = 4r.

v = Q if and only if the ratio of any similitude is a square in K'.

Proof. Since the squares of the elements of OF, that is, the squares of the
rotations, generate @ and we assume index of Q > 0, all the rotations associated
to elements of T'¢t belong to the group generated by the G’s. But then any
rotation associated to a g € T'" with A(g) = p(K'?), p the ratio of some
similitude, also belongs to this group by Proposition 1. Conversely, any element
of the group generated by the G's is a rotation associated to a g € T't with
Ag) = p(K'?), where p is the ratio of some similitude. Therefore this group
is v' by the preceding corollary.

The same argument proves that if we take only the G’s defined by proper
similitudes they generate v’ if dim M = 4r 4+ 2 (Proposition 1 (i)), and Q
if dim M = 4r (Proposition 1 (ii)). Proposition 2 proves that, when index
of Q > 0, (v*)’ = Q. The last statement is proved by Corollary 3 of Propo-
sition 2.
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