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'THE AUTOMORPHISMS OF THE GROUP OF SIMILITUDES
AND SOME RELATED GROUPS.*?

By Maria J. WONENBURGER.®

. Ths 34T ¥l s
Tg rig Memory oF Dy, Junio Iuy PAsTOR.

In [5] J. Dieudonné has determinad the automorphisms of the ort.hogu]lml
aroup, the group of volations and their corresponding projective groups .under‘
the assumptions that the base field has characteristic not 2, the din.)ensmn 0_1'
the vector space is sufficiently large and the index of the guadralic form is
oreater than zero. 1% has been proved that bis results hold true without the
T-esi,rietion on the index of the quadratic form. For the case of the oréhogonal
group this was shown by {0, Itickart in 8], for the projective group it was
proved by J. Walter in {9] and for the case of the group of rotations an.nl
the projective group of rotatious it was proved in [13]. Our purpose now is
to determine the automorphisms of the group of similitudes, the group of
proper similitudes and their corresponding projective groups. The general
mothod consists in a reduction to Dieudonné’s case, namely, it is shown first
{hat, il an automorphism of any of the groups nnder consideration takes the
subgroup of rotations or the cosets defined by ike subgroup of rotations info
themselves, the automorphisms of these groups are determined by Diendonné’s
resulis {see Lemma 2 below and its corollaries). Hence our fask is to prove
the invariance of the group of rofations or the projective group of rotations
under the automorphisms of the groups under consideration.

The case of the group of similitudes or the group of proper similitudes
is sebtled fivst.  Tf we deal with an odd dimensional vector space the projective
aroup of similitudes is isomorphic to O*(¢), so theve is nothing to prove,
When the veetor space is even dimensional the study of the automorphisms of
the projective group of similitudes and the projective group of proper simili-
tudes requires a more careful investigation of the new involutions appearing
in these groups in order to characterize the cosets of the (n—-2,2) invelations.
Received May 22, 1902,

T Most of the resulls in this paper ave generalizations of resulis included in the
author’s dissertation written under the dircetion of Professor N. Jacobson and presented
to Yale University in 1957.
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Onee these cosets have been characterized the resulls Lollow from the corollaries
of Lemma 2. Since our characterization of the cosets of (n—2,2) involutions
exciudes the case when X has 3 or 5 elements, we study fivst the automorphisms
of the projective greups under consideration when the base field is a finite
field.

1. Let 3 be a left vector space over a commutative field X and {4 a
non-degenerate quadratic Torm on M. It & always assumed Lhat the field X
has charaeleristic not 2. The elements of X will be always denoted by small
greck letters, the elements of M by small latin letters and the semi-lincar
transformations of 3 by capital lafin letters. The image of z € Af under a
transformation 1" wiil he denoted by 27, and, when the scalar muliiplication
by @€ I iz considered as a linear {ransformation it is demoted by .

A semi-linear transformation Z” of M rvelative to the automorphism o of
K is called a semi-similitude if for any =€ A

- Q(eT) =p(@)2))7

where p3% 0 is a fixed element of K which depends on 7 and is called the
ratio of 7', Tn partienlar, if o is the identity, 7' is called a similitude. When If
is odd dimensional every similitude is the scalar multiple of a rotation. When
I is even dimensional, say dim 3 = 2m, the determinant of the matrix repre-
senting the similitude I' of ratio p with respect to any basis is either p® or
we g™, In the first case T i called a proper similifude and when the deter-
minant 18 —p* 7" is an improper similitude.

The similitudes form a group, which we will denote by S(@) ; when the
space A is even dimensional this group contains as a normal subgroup of
index 2 the group of proper similitudes, which we denote by S+(¢). The
centres of these groups consist of the scalar multiplications with {he only
exception of the case of the group of proper similitndes of a two dimensional
space (see e.g. [3]).

The similitudes of ratio 1 form the orthogonal group O(@) and ihe
group of proper similitudes of ratio 1 is the group of rotations O+{Q). The
centre of O(Q) consists of == 1, with the only exception of the case when
dim M =2, I{ is the prime fleld with 3 elements and @ has index 1 (sce e. g
[1, page 132]).

Let £ be the multiplicative group of the field K. Then the projective
groups PS(Q) and PS+(() are defined as

PE(Q) = S(Q) /K, PSU(Q) =8 (Q)/K,
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whick, with the exception of the case of the group (@) of a two dimensional
spage, arve the factor groups of S{Q) and 8:(Q) by their centres. Similarly,
i 7 is the cenler of O(Q), Z == - 1;, with the only exception of the 2 dimen-
sional case mentioned above, and

PO(Q) =0(Q)/% snd POH(Q) = 0-()/Z 1 0°(Q),
We are going to use the following known vesults:

(1) When dim 3 =nzz 4 every aulomorphism ¢ of O(§) may be
written in the form

(G} == TG () for every G'e 0(Q),

where > (@) is a representation of O() in the multiplicative group
o, — Iy and T s a semi-similitude of ¢, (Cf. 75}, [8] and [6]).

(ii)  When dim 3/ 22 5 every automorpbism of 0+{Q) is the restriction
of an avfomerphism of 0{Q). (8ce [5], {6] and [137).

(i)  When dim J Z 4 every automorphism of PO(Q}, the projective
orthogonal group, is induced by an antomorphism of 0(Q). (See [5], [9]
and [67]).

(iv)  When dim ¥ = 5 but dim M £ 8 every antomorphism of PO{Q)
is induced by an antomorphism of 0+(Q), (¢f. [57], [6] and [13], and also
Theorem 4 helow).

(v) When dim M =6 and s£8, and K is a finife feld cvery automor-
phism of PQ{Q) the projective commutator group is induced by an auio-

morphism of 0*(@}. {Cf. [5] or [6]).

Any element of order 2 of any of the groups under consideration is called
an involution of that growp. It is well-mown thai, i 17 iz an orthogonal
invelution, that is, I is an orthogonal fransformation and % ==1 £, then the
space 3 splits in a direct sum of two subspaces,

M e M @ M-,

sneh thet U7 leaves invariant every clement of 3* and takes every vector of
M- into its negative. The subspaces 3+ and /- are non-isofropic and mutuaily
orthogonal. I dim * = p, then dim 3/~ == 0 p and 17 is called a (p, n - )
involution. Tt is clear that, if a linear transformation commutes with 7, it
must leave the spaces I+ and 3/~ invariant and that there exist invertilble linear
transformations anticommuting with I7 if, and only if, dim M+ — dim - since
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such transformation must take * into M- end A~ into A+, Now suppose that 7
is a similitude which commutes with U, the vestriction T (%) of T to M* (3-)
is a similitude of this subspace with respect to the restriction Qye (Qy-) of @
to M+ (}-). Henee, such T' will be vepresented by 7' X T, where T, and T,
have the same ratio. Conversely, if T;€ 8(Qy) and 7€ §(Qs-) have the
same ratio p, we can compose both of them fo obtain a similitude T, X 1y == T
of M==M*+D M- by taking, for any z==z -+, 2 €M, 2,6 M-, Ta
=3 - P92y, Then 7' is a similitude of vatio p with respect to @ and it is
proper if Ty and 7', are both proper or both improper, otherwise T is improper.

The coset of PS{Q) defined by a similitude 77 will be denoted by 7.
Tt is clear that T)0, == .7, implies T\ 7 == 57T, or T T wm — 17T,

R. Let (@) be the commutator group of the orthogonal group 0(Q).
It is well-known that if dim 3 == 3, the centralizers of 2{Q) in (@), O*(()
and O(Q) consist either of the identity transformation 1, or of =+ 1, (see
[1, Th. 3.237). In what follows we will need to know the centralizers of
PQ(@), PO(Q) and PO(Q) in PS(Q) or PS(Q). Now, if we establish
that the centralizer of P{(Q) in PS(Q) consist of the coset of the identity,
it will follow thai the same is true for the centralizers of PO*(Q) and PO ().
The essence of the proof is Artin’s proof of the theorem just quoted.

Lessea 1. Let ©(Q) be the commudalor group of the orthogonal group
0(Q), @ @ non-degenerated quadralic form over the vector space M of dimen-
ston greater than 2. Then the centralizer in PS(Q) of the group of coset
defined by Q(Q) consisls of the coset of lhe identily.

FProof. We consider two Qifferent cases.

Case 1. 'The base field K contains more than 5 elements. Tn this case,
given a 2 dimensional vector space over X with a non-degencrate quadratic
form @, the group @{Q,) contains elements which are not involutions (see
e.g. [18]). Now, il &' is a non-isotropic two dimensional subspace of M with
respect to ¢, the commutator group ©(Q) contains the group Q(Qy) X lyz,
where Qy is the restriction of ¢ to N and 1y ig the identity transformation
of the vector space AL, TLet & be an clement of £(Qx) which is not an
Involation, then Ga= (X ix1 € Q(Q). Tf T is a similitnde whose coset T
belongs {0 the centralizer of PQ(Q) in PS(Q) (T = Pd. and we must have
OT'=-—1T6G or TG = GT. We show firgt that — TG — GT is impossible,
for then, if w¢ N1,

F o= 26T — 2T, that is, (27)6 = —-2T.
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but no element of A/ is taken into its negative by ¢. Hence 7l = a7, which
implies that T tekes N'L into itself and, consequently, T takes N into itself.
Since any one dimensional space of A can be expressed as the intersection
of two non-isotropic subspaces of dimension 2, T leaves invariant all the one
dimensional subspaces and, thevefore, T iz a scaler multiplication, In other
words 17 belongs to the coset of the identity.

Case IT. ¢ has index greater than zero (this is always the case if K is a
finite fleld when dim 3 = 38). Tf & is any isotropic vector, let N he a non-
isotropic 8 dimensional subspace which containg z and let y€ N be a non-
isotropic vector orthogonal to z, then there is a rotztion G of N which leaves
@ invariant and takes y inte y--ax (see [1, p. 133]). The rotation Ga,
@740, heing the equare of Gyyy belongs to the commuiator group Q(@y) and
hence to G X1y. € Q(Q). Now, if there were a vector z€ N such that
Wla =z, then 7@ == 2(fa? ==z hence, (oo being a rotation of a 8 dimen-
sional space which leaves invariant the plane spanned by o and 2, should he
the identity mapping (ses [1, Th. 3.17]) but this is impossible, because
YGoe —y 4 2ax. So, if an element 7 ¢ P8{Q) commutes with the coset of
o = Go X Iy, we must have T e TaT'; therefore, " must leave invariant
the subspace IV, spanned by @ and N, hecause N, i¢ the subspace of vectors
invariant under 7. Since K is the subspace of N, orthogonal to N, T must
take A into itself. Tlence 7" leaves invariant every isotropic ene dimensional
subspace and, consequently, it is a scalar multiple of the identity {see [1,
Th. 3.18] ).

Lesata 2, Let M be « veclor space with a non-degensraic quadratic
forme G and dim M >4 If ¢ is an automorphism of the group S(Q) (or
S(Q)) which takes 0O (@) tndo iself, ¢ can be written in the form

p (1) = V2PT(T)

where «{1') is @ representation of S(Q) (87(Q}) into the multiplicaiive
group X' and V is a semi-similitude of .

Proof. By the result quoted in Section 1 as (ii) the vestriction of ¢ to
0*(¢)) can be written in the form

$(0) = VGV (G)

Let o be the antomorphism of Sy (84(Q)) defined by
o (1) == VTV,
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Then the restriction of the automorphism o to O°(Q) gives

(1) op(G) = B:(5) |
Tet T be any similitude (proper similitude) and write o (1) = TXy.

Now, if ¢ is any rotation so is T-1G7T, hence, by (1)

{2) o (THAT) == TG (TGT)

On the other hand,
O‘rfi (TI(T”P) == g ( T"l}(:rgfj ( G’)o‘q') (T) e ;\'f;"‘lT"l GTXT b ( G) .

(3) |
Comparing (2) and (8) we doduce that Xy commutes ov anticommutes with
he lements 1GT for all (¢ 0+(Q); therefore, since TA@T runs over
: {Q)) bhelongs to the centralizer

hich will be called «(I').

the elements T ' e
0+(()), the coset Fy of Xy in PSR (ITS' (
of POY{Q), that is, Xy is & gcalar multiplication w
8o o (1) == T (1) and ${T) = VATV,
Conornary 1. If dim M =2 4, any wutomorphism ¢ of S(¢) which tokes
00 indo itself has the form deseribed in the lemma.
Proof. Tt is enongh {o substituie 0(Q) tor 0+(§) in the prool of the

lemma and to use (i) instead of (3i).

Lot dim M= 4. Any automorphism ¢ of PS(Q) which

" b Y
OROILARY 2.
) \ m of S(Q), that is,

lakes PO(QY dndo ilself is induced by an automorphis

G(T) == VTV, where Vis @ semi-similitude of €.

The prool is the same as for the lemma with the obvim.ls modifications,
nmne'l-\x (T does not appear and instead of (i1} we use (ili).

ConoLnany 8. Lot dim M ==2m, m > 2 bul m = 4, Any oulomorphism
af PS/’(O)” (or PS*{Q)) which lakes PO(Q) into dtself 18 induced by an

automorphism of S(@).

iv) instead of (il : using {v) we obtain the next
The proof nses (iv) instead of (iii) and by using {¥)

covollary.
If K is a finile fleld,

im M =<2 =6 end =8
Conornany 4. Let dim M ==2m =6 A8 : fel
overy aulomorphism of PE{QY (or PS{I)) which takes P(QY into ilself

is induced by an auiomorphism of S{M.
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3. We are ready now to find the automorphisms of S(Q) and & (Q).

Trrores 1. Let M be o vector space over the field K and dim 3 = 4

and let Q be a non-degenerate quadratic form on M. Bvery automorphism ¢
of the growup of similitudes §(Q) is of the form

() = V2TV (T)
where V is @ semi-similitude of @ and «(T') is @ representation of S(@) in K,

Proef. On account of Covollary 1 of Temma 2 we only need prove thaty
every awtomorphism of S(Q) takes O0(@) into iisell. Since the erthogonal
group is generated by symmetries, that 1, (n—1,1) involutions, it is enough
?’o show that every symmctry goes info an orthogoral {ransformation. 17 2’&.’
oA symmetry, (¢{N))*—1y; therefore, if $(&) is not an orthogonal
nllmlution, & () should be a similitude of 1atio —1, s0 that gb(.‘-‘f)his a
:lsnnilitudc of the type studied in [117. Tn the proot of Proposition 4 of 117
it is shown that there exist orthogonal transformations anticommutine \\'it:l;
the similitudes of such type. Now, if To(X) =—¢ () ¥, it :foiim:s that

G (T)N = Xy (V)

which gives a contradiction, because, when dim A 2, there ave no simititudes
which anticommute with the symmoetries,

Trzowex 2. Lel M be a veclor space over the fleld If, dim i e= 2 > 4
mﬁzd_ i} be @ non-degenerate quadratic form over M. Bvery automorphism, o
of the group §°(Q) is of the form

G{T) o= VT (T,
where Vis o semi-simililude and (1) s @ represendation of S50y in A

Proof. 1t suffices to prove that under ¢ O0*(Q) goes info itscli. Since
the group 0+(Q) is generated by the (n--2,2) involutions, if O (¢)) is not
taken into itself by ¢, at least one, say ¥, of the (n-——2,2) Vim'o]u!;i;ns mush
he taken by ¢ into an involuiion of S which does not belong to O (Q).
\& before we get that ¢ (') has ratio —1 and is of the type studied in II?;
Now, if dim ¥ =, we get a contradiclion since, by [11, Proposii:ion- ,_ﬂ
there exist proper similitudes which anficommute with ${X) whereas tllei'e,
:11'0 o similitudes anticommuting with the (#--2, 2) involutions when
dim 3 > 4, If dim H = 4r -4 2, this argument does not apply heeaunss §+(0))
Qoes not contain similitudes which anticommute with ${A7Y, but we kml)'\.v
that in this case (see [11, Prop. 4]) the centralizer of the centralizer of ¢ (1)
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in S*(Q) consists of similitudes of the Torm ay, 4 B (XY where % 57 55 0.
Tf K has more than 3 clements, there exist elements a 5% 0 and § 54 0 such that
g pBs4 0. On the other hand, when K has wove than 3 clements, the
gentralizer of the centralizer of a (n-—2,2) involution Y consists of the
elements @, and .Y, where 2 € K7, “I'his implies that the centralizer of the
contralizer of X is mapped by ¢ into a proper subgroup of the centralizer of
the eentralizer of ¢ (.Y'), which is a confradiction. ‘Therefore ¢(X) ¢ O+ (4)
and we can apply Corollary 8 of Lemma 2.

We have not taken care yet of the case when K hag only 8 elements and
dim M =4r -}- 2. Notice first that if there do not exist in 8*(@) mvelutions
of ratio — 1, any involution of & (@) is a rolation. On the other hand, if
there are involutions of ratio — 1, {10, Th. § and Corollary 3 of Prop. 4]
imply that, when I is the prime field with 3 elemonts, the group O7(9) is
generated by the squares of proper similitudes. So that, in any case, any
automorphizm of 8 (@) must take O+{() into itzell and we can use Covollary

3 of Lemma 2.

4. We agsume in this section that & iz a {inite ficld and dim A > 4.
T is well-known that if & is a finite field and @ a quadratic form en a vector
space A over K of dimension greater than 2, then ¢ has index greater than
zevo. Tt is also well-known fthat, when ¢ has index greater than zero and
dim M =5, PQ(Q) is a simple group (¢l {4, Th, 2] and (8, p. 58]).

Let (PS(E) and {(PS{Q)) he the first commuiater groups of PA{0)
and P8, rvespectively,  Lhen

PO(Q) D (PS(Q)) D PR(Q)

and
PO D{PS{E)) D Pa(g).

Naow, because of our assumption, it follows that the serond commutater groups
ol PS(Q) and PS{(J) are equal to PQ(Q). Therefore any antomorphism of
PEQY or PS{G) must take PO indo ilzelf and we can apply Corollary 4
of Temma 2 to establish

Trponear 3(1).  Fel M be a ceclor space over a fintle field K und
2 0, bud dim ] 5280 el ) be o non-degenorale quadivatic form

dimy A == 24

ane Mo dAny aulomoiphism of PRLQY or PS-(0Y is induced by mi anlo-
wgrplism of S{Q).

5. Inorder {o prove the assertion of Theorem 3(1) without ihe assump-
ton thal N iz a finile field it will suflice to show that under any anio-

G
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morphism ¢ of PS(Q) or P8 (Q) the cosels ol (»—2,2) involations go
into cosets defined by clements of the rofation group; for, this implies that
PO () goes into itself and hence Covollary 3 of Lemma 2 can be applied.
It will be shown in this section that, in fact, when K has move than 5 elements
and dim M 22 5 hut £ 8, any antomorphisim of P8{G) or P8 () takes the
cosets of (n—2,2) involutions into cosets of (n-—2,2) involutions.

It will he convenient to describe the different kinds of invelutions in
PS¢y, Let Te8(Q), then © is an invelution in PS(¢) i and only if
1w gy sueh similifudes will be called projective involutions. The projective
involutions of PS(Q)Y can be divided in 3 eclasses:

1) T is u sealar multiple of an orthogounal invelution, that is, T = U8;,
wheve {7 is an orthogonal involution. Then 7' has rvatic g2 and a==g%  We
will sav that T ix the cosel of an orthogonal involntion since it contains two
sucl involutions, namely, UV and T/, If either 7 or — 7 is a {(n—2,%)
orthogonal involution we call T a (n—2,2) coset.

2) I s a similitede of ratio p and 2% = -,y Such similitades will
be called P-involutions. 1t was shown in |11, Lemms 1] that the P-involu-
tions arve always proper. When dim M =414 2, the similitudes anticom-
muting with a P-involufion are improper {sce [11, Prop. 4]}, so that, in
particalar, two P-involutions cannot anticommute.

3} T s a siwilitude of ratio p, T ==p;, bul p is not a square in K.
When dim &/ =6 and K has more than 3 elements. no automorphism of
Py or PS{Q) takes a (#--2.2) coset into the coset of such a 7' (sco

[12. Th. 5] ; there is an emission in the statements of this thoeovem and of

Lemma 9, for the lemma is only true if K has more than 8 clements and,
therefore Theorem 5 only applies under this assumption).

In the vest of {hic xeciion i i assumed thal K conlains move than 5
elements.

First of all we are going to characterize the (n-—2,2) cosets among the
cosels of orthogoenal involutions and state some properties of the /-involutions.

Lesars 3. Let M be w wveclor space with a non-degenerale quadrolic
form @ and dim M > 4. Let T be an orthogonal involufion of S*(Q) or 8{Q).
If (Cpe {0 ((Cpu(FYYY s fhe commadalor of (he centralizer of T in
PSAQY (P8, then the conter of (Cps-(CY) ((Cox (Y condning

elewents aekich are wot involuiivns if and only if U i a (0 —2.2) cosel.
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Proof. TLet @* and - be the restrictions of ¢ to the plus and minus
spaces of the involution I7. Then the centralizer of I in PS*(Q) (PS(@))
containg the cosets of the transformations T X T., where T, and T, are
similitudes of @+ and -, respectively, with the same vatio and both proper or
both improper (withoul restriction on the perity of I’y and Ty). When the
pius and minus spaces of U7 have different dimension the centralizer of O
consists of such cosets only. Thevefore, since dim ¥ >4, when T is a
(2,2} coset the commutator of the centralizer of 7 is contained in the
group of cosets determined by OH{Q+) X 0*(@") and containg the cosets
defined by Q{P*) X Q(07). Hence, it {7 is a (n-—2,2) orthogonal involution,
the center of {Cpe ()Y {((Cps{ )Y} contains an element which is not an
involution, namely, 1, X G, where G € Q{{) and G25£1,.

On the other hand if I7 is an (n—p, ) orthogenal involution and
e g 20 o2 2 the commutator of the centralizer of U in P25 (2) or PS{)
is alwavs contained in the group of cosets defined by O (01> 0 () and con-
tains the cosets defined by Q (7)Y > Q(0-). Ilence the center of (ps (7)Y
or {('ps(77)) consists of the coset of the identity or of such coset and the
cozet defined by {(—1,)X 1.

LFrom this lemma and [12, Th. 3], quoted ahove, we get the following

coroliary.

Cororrary, Jf dim A = 4, wnder an awlomorplisn of PS{GY or P8 (()
a (1-—2,R) covel goes indo @ (n-—2,2) cosel or inlo the cosel of o P-
tneolution.

Lestars 4. Let T be w Podnvolution.  Then any Lo {n--2,2) ortho-
gonal fnvolulions commuling with T end commuting with each olher huve
their minus spaces orthogonad 1o each olher.

Proaf. 1t s well-known that fwo different (n-— 2, 2) orthogonal involu-
tions which commute must have their minus spaces orthogonal te each other
or the intersection of these minus spaces is a non-isotropic one dimensional
space. I we were in the latter case, since hoth involutions comniute with T,
T would leave invaviant {his one dimensional gpace.  This is impossible,
becanse, 17 p is the ratio of 7, (u, ATy e p (@ 2 T?) e —— (20, 2) implies
(o T) =100 that is, 7 fakes a non-isotropic vector into another vector
orthooonal to it

Corortawy.  Lel dm M =2m >4, Lel {7} e a sef of (n—2,2)
orthogmial invelulions which commade with T and wilh ecch other, then
fhere ave al most melements in the sel {T/}.
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We are going to assume that dim 3 == 2m > 4 and that there exists an
automorphism ¢ of PS(Q) ov PE(Q) which takes a (n— 2,2) coset  info
the coset of a P-involution 7. Tet U7 be the (2—2,2) orthogonal invelution
of 17, let =, 2, be an orthogonal Dbasis of its minus space and @, 2y, ¢ L 2y
an orthogonal basis of its plus space. Let us define Uy d==2,3,- + ,2m, as
the {2 -—2,2) orthogonal involution whose minus space is spanned by the
veetors ay and z. Then I == Uy the 2m— 1 involutions U7; commute with
cach other and have the property that the product of any two iz also a
(n—2,2) orthogonal involution. Now, hy the Covollary of Lemma 3. we
know that the cosets $(U), i==2,- -+ Zm, are {n-—-2,2) cosefs or cé)sciﬁs
of P-involulions and the product ¢ (U)o (), i 54§, is also a (n—2,2) coset
or the coset of a P-involution.

.L]mnm o, Let Uy, i=2,3,- - sRm, Zmo 4, be the sef of (n-—72.2)
wvnlutions described above and lot d{Uy =T, Then

(1)  either all the Tiy im0 -+, 2m commude wilh each other, or
(2)  any twe different T, anticommade.

Proof. We can assume that if T;is not a P-juvolution, it is a (n—2,2)
orthogonal involution. Tt is clear that I dim A = 4r - 2 all the T, commute
with cach other (see the properties of the M-involution given at {he beginning
of thix seetion). “

N On the other hand, i{ dim A = dry it seems possible that some paivs 7',
Ty commute and some others anticommute ; however, we will show that it 1wo
different 7 commute all of them must commute. To show this we prove first
. MR Y R - - -
that if 7% and T'; commuie, then one of the cosets Py Tiox Tyl is a (di-—2,2)
cosel. We : rove that, if neither : ig 2,8 '
goset {‘\\ e 0}1‘3%;};]1?8(] prove that, if neither ,T'f nov Ty is a (4 — 2,2} orthogonal
volution, T30 s a (47 —2,2) coset. Lot pi and p; he the vatios of 7; and
.F]'i. Lr ?.( 1. N N Le o ] 33
L, then 7507 has ratio pips and (I57)% == pip; s hence, 7% " is mot & P-involu-
Lon and, consequently, Ty must he o (dp %, 2) coset. Now, since every
T commutes with 7, Tpand Ty T must leave nvariant the dr-—2 and
2 dimensional spaces defined hy the (4r--2.2) cosol: hence the Ty whieh
7% 12 .. g . 2 : o ) ) o
are P-involutions induce P-involutions in these spaces and we know that in a
space of dimension 4r -2 fwo Puinvolutions cannot anticommute.  Thiz proves
e e ar 3 arfienlar of AT L5 3
the lenima and, in particular, it ali ihe 77, anticommule with each other there
caunot be (n-—2,2) involuijons among them,

,J“EQ){M'"\ O Let &im 3 = 2m, m > 2 but m Fdo Then any automorphism
¢ of PEQ) or PY(QY takes « (Rm—-2,2) cosel inlo a (2m 2.9 cosel,
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Preef. Assume that U is a (2m-~2,2) orthoganal involution such that
() =1, where T is a P-involuticn. Tt the Uy, 1—2, + -, 2m, he defined
as before.  We are going to show that, when m > 2, alternative (1) leads to
coniradiction and alternative (2) can only occur when dim A = 8.

Case 1, Tiet Ti==¢(T;) and essume that all the 7 commute with each
other. We have seen that this implies that if 7, is not a (n-—2,2) coset
then 375 s & (n—=R,2) coset. By Lemma 4, at most one of the 77, say
T, s an orthogonal involution, consequently T.7T,, j=—4,35, - L 2m, is a
(202, 2) coset, 5o that 1 == 1,V 0, where V; is a (2m — 2, 2) orthogonal
involution which commutes with 7, As for 7%, either Py mee ToVoorgp o1
Ta=T", Now, the Vj j==8,- - 2m, commutie with each other and with
Ty, therefore, by the Corollary of Lemma 4, there are at most m different 7 i
Hence m 22 8m — 2, that is, m =< 8.

Case 2. Any two diffevent 7 anticommute. But. if dim 3 == ¥p, p not
divisible by 2, the maximal number of anticommuting non-singular linear
transformations i 2k 4-1 (see e.g. [7, Th. 2]; since in our case T2
the result ean be proved by using the theory of (lifford algebras as in Section
G helow}. Since the number of T is 25 — 1 we must have 26y 1 5 2% o1
and if 2%p > 4. this is only possible when b —3 and pe=1, that is fo say. if
dim A = 8.

Trom Lemma 6 and Corollary 3 of Temma 2 we guf

Tamorwar 3 (1Y), Lel @ be a non-degenerale guadralic form geer ¢ veclur
than 5 elewends, ecery aulomorphism & of PS{OY or PEAQY ix of the form
(T == VIV,

where 7 ds a semi-similitude of ).

8 which is

6. In this section we are going to study the case dim 3/
eft out in Thseorem 3(1y and Theovem 3(IT). When we deal with /28 ((})
theve can acinally exist antomorphisms different from the ones deseribed in
these theorems (ef. 2]}, We will show fivet that here are not exceptional
awtomorphism of PO (0) 36 K iz a finite fiedd and then it will ho proved
that even when there exist exeeptional automorphisms of P5(¢) they wannot
be extended to PS(0). We recall {hat in the defermination of the auto-
5. the frouble arises, as for
PSH(0), from the fact that it is possible that a {w - 2.2) cosel is taken by
an antomorphism ¢ info the coset of a Peinvolution {the orthogonal P-involu-
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tions are the involutions of the sccond kind of Dieudonnd). Now, if it can be
proved that the (n—2,2) cosets of POT(Q) go into {n-—2,2) cosets, the
usual proof can be carried through showing that the automorphisms of PO-(Q)
are indueed by automorphisms of O+ (@),

Turones 4. Lel U be a S-dimensionel veclor space over K and ) a
non-degenerate quadrelic form over K. Then, of K 1s o finile field, every
awtomorphism of PO*{Q) 1s induced by an awlomoerphism of OF((}).

Proof. When K is a finite field it contains only two different quadratic
classes and any subspace of A of dimension greater than 2 contains isotropic
vectors ; consequently, if 7 is a (n—2,2) orthogenal involution such that the
restriction Q- of @ to the minus space of U7 has a square diseriminant, ¥ can
ho expressed ag the product of two (n—2,2) orthogonal involutions 17, and
T, which commute with each other and such that the diseriminants of the
restrictions of @ to the minus spaces of 7, and V', are not squares.

To establish our theorem we only need prove that under any auto-
morphism ¢ of POY(Q) a {(n—2,2) coset 7 cannot he taken into the coset
of a P-involution: for then & must be taken into another (n-—2,2) coset
(see {4, Section 89]). Hence, il there are no orthegonal P-involutions there
is nothing to prove. 1 there exist orthogonal I-invelutions,  has a square
diseriminant and this implies that the coset of a (n—2,2) involution ¥
belongs to PQ(¢), the commutator group of FO((), if and only il the
vestriction of € fo the minus space of IV has a square discriminant, because
the spin-norms of & and - &7 are equal to the diseximinant ol ¢ (see e g
[1, Th. 5.17]).

Now, if T is an orthogenal P-invelution, 7€ PQ(Q). (This can he seen
by computing the spin-norm of 77 or divectly, for, since there exists an orthoe-

normal basis ay, v, t==1,2.3,4 of @ such that o7 =y, and 3,0 == —a; (ol

e.g 111, Prop, 1] T== 2,87, -15°1, where T, and § are defined as follows,
R A R T for 7—1,2, and
wl =2, Ty =y, for j=23,4, and
28 == i, il = 24,0, where the indexes {42

should be computed medule 4}, So, if the restriction of @ te the minus space
of the {n—2,2) involution ¥ dees nol have a syuare discriminant, then
H(F) must be a (n-—2,2) coset, Now, il this restriction has a sguare
diseriminant, 7 =17, where 1,, 7, ;‘f Pa(@y and T,T, =177 henee
G {0y = (V3p{V,), that Is, & (L) is the product of two commuting
(n—=2,2) cosets and, consequently, it cannot be a P-involution.
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Remark. [2, Coroliary 2 to Th. 1 and Th. 81 imply that under the
conditions of Theorem 4 above, when ¢ has a square discriminant P3SN
. s ¢
does have exceptional automorphisms.

We return now to $he study of PE(¢) and consider two eases.

Case 1. K ds a findle field. Tn this case it is easily seen that any 2.
dimensional space over K contains similitudes of any ratio with 1‘u.spu(;‘t to
any quadratic form, hence the same is true of 1 wiih respect fo . Then
.[IO‘,V (301‘. 3 of Prop. 4] implies that the first commutator group of 'S0
 LO(Q), and, therefore, every antomorphism ¢ of PS(¢) induces an
automorphism in 70 (@), Now, Theorem - shows that the proof of Lemma
2 ean be applied to the prosent case to obiain (T =TT,

Case 2. K has wore than 5 elemenis. Lot us surpose that under an
automorphism ¢ of PS(Q) a (n-—2,2) coset © is not taken into o (n—22,2
coset. Then, by the corellary of Lemma 3, $(C)=T, where T isa P-in\'c'ﬁu'-
tion.  Consider the sel of (n-—2, 2} orthogonal involutions 17, i==2.8, -- 8
defined in the preceding section ; the proof of Lemma 6 shows that ¢(l%-';‘; = T;'_‘l-.
where the 7 are P-involutions and any two of them anticommate, L(ﬁ v ]}L;
the symmetry whose minus space is spamned by the vector xy, then {7,V = 7717,
and, consequently, if ¢{V) = W, cither Wy W o0 W e 1Y, .ii;
other words the iinear transformation W commuies with some of {the 77 rzmd
anficommute with the others, Tet Ap J==2,8,- .8 be 8> 8 malvicos
representing the linear transformations 7' with rezpect {o a certain basis of Y,
?:l.wn A e —pil where [ i the 8 3 8 identity matrix. This means that. if
N s a 6-dimensional vector space over K and @ is a quadratic form on ¥
such that there exists an orthogonal hasis P d=1,2 - 6, with (s
= —= pp, there exists a homomorphism « of the {ifford algcb]:a %f-‘((}’) G;finm'i
hy @ into the enveloping algebra of the matrices A, .= a 3.0 - ? nanmely,
al) =iy d= 1,2+ -5, Singe the Clifford algebra (f"((;)’) is‘:sil.npic am-d
dita (") = 2588, ¢ is an isomorphism of (f(@’} onte the algebra of
88 matrices with entries in & Now, the only elements of ('-'((‘?T) \1'111'(-]1-
commute with some of the v; and anticommute with the others are the‘ elementy
ol the Clifford group of the form aq iy 0 cay, ; hence, the only Huear h‘ems;
formations which commute with some of the 77 and ant.}'un)1n;nui‘n with the
oih(irs_zn'e of fhe form e, T T T Buot, it 3y obvicus that S (V) cannot
b(;! ’1’,‘_,”_,‘_‘,.- © Ty, becanse VosA U000 - -7 Therelore any antomerphizn ¢
of PS() takes the (G, 2) cosets into (6.2) cosets and must be of 1he form

S{TY = VT
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