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RESUMEN

Dada una forma hermitiana f no degenerada, definida sobre el
cuerpo conmutativo I, y siendo el automorfismo involutivo aso
ciado a f distinto de la identidad, se define una forma cuadréfica
() asociada a f. LEntonces las transformaciones unitariag y seme-

-janzas unitarias respecto a f son transformaciones ortogonales y

semcjanzas respecto a . La representacién espinorial del grupo
ortogonal defivido por €} induce una representacion del grupo uni-
tario definide por f. Llamamos a esta representacion del grupe

unitaria su representacién espinorial.

fin el caso de que la caracteristica de ¥7 sea cero o mayor que
la dimension de M sobre F, se demuestra que la representacion
espinerial del grupo unitario es completamente reducible y se ba-
llan sus companentes irreducibles de las que sc determinan algu-
nas propicdades. La representacidn espinorial de! grupo unitario
puede extenderse a una representacion del grupo de semejanzas
unitarias, obteniéndose para este caso fa misma descomposicion
en componentes irreducibles.

Finalmente, ¢! método usado para el estudio de la representa-
cion espinorial del grupo unitario permite definir representaciones
del grupo proyective de semejanzas unitariag en grupos Ortogo-
nales. Es posible que estas representaciones puedan ser obtenidas
también usando las componentes homogéneas de] algebra exte-

{r) This paper is the translation of the author’s doctoral dissertation presented
to the Usniversity of Madrid and written uoder the guidance of Professor G. Ancochea.
The research was supporied by the Fundacitn March. '
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InrropucTtION
forr‘ihelrl;cﬁfff)‘rd‘algébra :[4] is an algebra defined by a ‘éuadr.atic
o .K‘ Qs ‘a quadratic form on - the vector space M over tﬁe
Ce(Q “ we w.ﬂl denote the Clifford algebra of the form by
: wg;i aC(t%) is znl aiﬁebra‘ over K, The definition of this algebra
S the subalgebra C+(Q) and the study of the; i
. y of their properties
can be found in [1}, [5], [6], [11] and [15], being [5] the most

complete study.
We wllll consider only.the case of a‘space M even dimensional
over K, i. e. (M : K)= 2% Then C(Q) is a central simple al-
gebra over K of dimensidn 9:r and, therefore, it is isomorphi
to a total matric algebra over a sfield R whosel center is K rl'}lm
algebra C (Q) contains a subspace over K which is identiﬁed. witls

e vector Space Iw: Any 15 ()f th u K i5 -
th v - baS & 15 § bS
ace is a set ()f gelle

_ Let ¢-be an invertible element of C{Q). Then ¢ definz
3nuer ‘automorphism taking the element § wmto ' p The hSt mfl
mvart:-ble e‘lements of C(Q) defining inner ailtomorpiﬁsms i:hi 0h
Ie:?ve mvariant the subspace M form a group which is caIled't;
Cilffor.d group. The transformations induced in M by these autcﬁ
morphzsms- are orthogonal transformations with respect to Q
:I'hc mapping y which takes zn element ¢ of the Clifford rou‘
into the o.rthogonal transformation induced in M hy the ginne[:
automorphism defined by ¢ is a homomorphis: of the Clifford
group on the orthogonal group O (()). The kernel of t .
morphism consists of the multipfic‘ l
ments of K.

his homo-
ative group of non-zera ele

. Since C (Q) is a simple algebra all its irredudible representa-
tions are equivalent. Any one of these
called spin representations, indnces a
ford group.

representations, which are
representation of the Clif.

C(O_) flas an inv Y - VINg Vv
Olutl
¢ an automorphlsm 1ea Inb invariang

the elements of M. This anti-automorphism will be dsnoted

If ¢ s an element of the Cllif'fo.fd', group, ¢ c*is an elenient
called the norm of ¢. "' S S a
‘Let f be a hermitian form on the vector space M of dimension
over the field F. Let K the subfield of I consisting of the ‘ele-
stits invariant under the :involutivé,au_torqorphism T of F asso-
ted: tothe -hermitian. form: Then: i:hérc_e exists a q11a;dr;§§ic form .
‘M .corisidered as a'vector:space over K such that the unitarias
ansformations of M with respect to f are orthogonal transfor-
mztions with respect to QO (cf. {127 and [17]). Of course the con-
¢rse is not true. ‘

We take the subgroup U (f) < O (Q) of orthogonal transfor-
mations of Q@ which are unitarian transformations of f. The spin
Areprcsentation of the Clifford group induces a representation of
‘the subgroup & consisting of the elements of the Clifford group
"\'vhich are mapped by y into-elements of U (f). We called this in-
‘dirced representation the spin representation of the unitary group
‘and its study forms the main subject of this paper.

in order to find the irreducible components of the spin repre-
" sentation of U{f) it is sufficient to know the structure of the
algebra G over K generated by the elements of A. It does not
_seem easy to find directly the structure of G, so that we start
defining a subalgebra D (f) of C*+(Q). Then we show that, when
the characteristic of K is zero or greater than (M : F), D{f) is
~ semisimple and we determine its simple components.

In chapter 11 we make a further study of D {fH in order to
prove that it coincides with G, Therefore we can conclude that,
when the characteristic of K fulfills the conditions mentioned
above, the spin representation of U (f) is a direct sum of inequi-
* valent irreducible represcitations.

In {16} we have defined in C (), considered as a vector es-
pace over K, a gradation with indices 0,1, ... (M : X). Then
C+ (©) is the sum of the subspaces of even degree and the Clif-
ford group is the set of invertible elements which define inner
. automorphisms homogeneous of degree zero. Moreover the inner

auntomorphisms of C (Q) which induce in C*(Q)) homogeneous
antomorphisms of degree zero are the automorphims of C* Q)
associated to a similitude of €. With respect to this gradation
D (f) is a homogeneous subspace of C* {Q) and if a similitude
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of Q is a unitarian s;mxlstude with respect to f, the au‘tomorphlsm

of C((}) associated to this similitude induces in D (F) an inner
auntomorphism,

Using these results, in chapter I we obtam faithful repre-
sentation of the projective group of unitarian similitudes of Q
into orthogonal groups. To d6 this we define a non degcnerate
quadratic form on the subspaces of D {f) of degree

24 d=1,2, 0 (M), - ses _ T b
f(?ﬂ J’)—lf(x,y) and f(z U)——f{x Jf}?-’,- and -

III) reflexw

and consider the transformations induced in those subspaces by
the automorphisms of C* (Q) associated to the similitudes of Q
which are unitarian s1m1§1tudes with respect to f.

Sl =y, ).

CHaprER ]

“If Sis a linedr transfortmation of M, # S will be the image
of %€M under 5. It is said that the lincar transformation S is
We start this chapter -recalling the definitions of hermitian ‘umitarfan similitude of ratio ¢ with reSpeCt to f (or 2 51m111tu-
forms and unitarian simifitudes and, at tbe same time, we set de of £ if
down our notation. These definitions will be given with the ge-
nerality needed for our purpose; in [9] chap. I, §§ 5,69 the
reader can find more general definitions. .
The subalgebra D (f) of C(Q) is defined and studied, as well
as the involutive anti-automorphism induced in it by the anti-
automorphism® of C (Q).

FieS,08) = fle, 7).

- p o= 1, the unitarian similitude S iz called a ;unitarian.
transformatxon We (ienoLe by Taypo the untarian similitudes de-

K Tyage= (a4 B0z,

- which are cal%cd umtarmﬂ homotecies.

When j‘{x ) =40 for cvery.y € M implies » , it is said
that the form f is non-degenerate. In what follows '\fI will always
be 2 finite dimensional vector space oveér F and f a non-degene-
rate hermitian form on M. o ’

Since M is a vector space over F, jt has an underlving séruc-
ture of vector space over K F and (M:K)=2(M : I).
Talking

§ 1

Let ¥ be a field of characteristic different from 2 and J an
involutive automorphism of F different from the identity. The
elements of F will denoted by small Greek letters. Let

K=la|a=0a, «¢k]

be the subfield of elements of T invariant under J. Then F is
a guadratic extension of K obtained adjoining any element 6 such
that 0/ = -—0 and therefore 0> = s € K.

Let M be a left vector space over F whose elements will be
denoted by small Latin letters, It is said that f(x, ) is a her-

{.1’.,2)**;((1 ) -, ),

(x,v) is a non-degenerate symmetric bilinear form on M,  con-
sidered as a vector space over K, -associated to the quadratic
form Q (%) = L (x, 2).
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" D(f) is an algebra over K and it follows from its' definition
hat it is.a homogeneous subspace of C*(Q) considered as a

graded vector space,

If &, 4, ..., %, is an orthogonal basis of M with respect to
f, the elements T : '

Ty Hyy een Eny Py=l a2y, yym=lay, oy =02,

S . oL s . ) form an 6rthogonal basis with respect to Q. When « + 86,
.j'-fo'rm‘ a basi “of -tl':_e._‘ subspace of degree k. As usual, we bave _ _g *+0, is an element of IF of norm 1, i. e

identified the: subspace ‘of degree- 1 with the. élements of M. . }
CF(Q) as vettor space over K s the sum of the subspaces of N(a—B6)=(a+ B6)(a— 0 —o? —pfr1,
even degree,” - ; S . : 4 ’

! 'It-*is':kqdw.‘l‘i?‘thé't e can a's;sociate to a'.uy_ simﬂﬁut_i.; of QO an .‘ let U, be the quasi-symmetry defined as follows,
- automorphisiri .of CH(Q) (cf. [9]; pag. 72, [10], [31]). A com- ‘ , o
plete definition of these automorphisms given in an unpublished. - L
paper by N. Jacobson is reproduced itr [16], It follows from the ' #li= (@ + B0z =ax By U=z for ;44
definition that such. automorphisms are homogenecous .of degree '
zero with respect to the gradation of ¢+ {Q). The automorphisms
gssaciated to the similitudes " of -, S and S coincide if and only
if § =8 T?,'_K‘m € K. Given "any similitude S, there exist inverti- . U= 0 ) Ui=0 a4+ §0) o=l 24 Bpr=
ble elements. of C(Q) which define inner automorphisms of this : ' ’
algebra induc’ing: in C+(Q)) the automorphism associated to S
(cf. [167); in particilar, if S is an orthogonal transformation
the i;lnei‘ automorphism defined by any element of the Clifford
group mapped by y into S induces in C+(Q) the agtomorphism : . e .
associated to S. The mapping which takes a similitude of Q into _LEMM"‘ L The.autoxvn(?rphlsm‘ of C(Q) aswc;]a'ted tlo ;hedm;
the automorphism of C*(Q) associated to it is a homomorphism. tarian transformation U is tbe inner automorphism defined by
Since any unitarian similitude U with resped to f is a simili- : f:\he clement
tude of Q, we can associate to U an’ autemorphism of CF(Q); .
in particular, if U is a unitarian transformation by its ascociated 14
automorphism we will mean the inner automorphism of C(Q) ; _ = 8

defined hy any element of the Clifford group mapped by
into 1.

.«

and therefore

=ay;+fpas pUi==02U; ==,

+ Q) m

Proor. Since C(Q) is generated by its elements of degree 1,
Dermvitiox.—D (£} is the subalgebra of CH(Q) consisting of it is sufficient to prove that on these elemenis the automorphism

. . - : : : e i i hism  defi-
the clements invariant under the automorphisms of C* {Q) as- associated to U, coincides with the inner automorphi
sociated to the unitarian homotecics. ned hy 1.
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The inverse of lz».', is-"- ‘ S 3 ' _
# ! :( 2(1537(1 )1( 1 ;‘Jra ._é(x;)__‘l'x,.j;:.) for u;i_g,-ﬂ
—{ 2%? 9 = T )~ Zuﬁf 9)

. 1+2a—§;3a2~—pf35 ==1 since az-——p[‘}?rm-l‘.

Since w, commates with , 3, for § 4= i

1, e Y. 1
;o xp e x, = U w, yy e = s gy Uy

(i)

¥

- O {w)t x,-_;f_.-) — (i(%iﬁ )g "

which proves the lemma,

The unitarian homotecy defined by = + 86, if N {x + BO) =1,
is equal to the transformation U = U, U,... U, and the automor-
phism of C(0Q) associated to 17 coincides with the inner aufo-
morphism defined by » = w0, 4, ... 1,

Tirst of all we are going to study the unitarian homotecies
defined by elements of norm 1. We take any element of the form

THE SPIN REVRESENTATION' OF. THE UNITARY GROUP = 87 |

4+ 0 and divide its square p? +o + 2p 0 by its norm wr—op;

sp we get the element of norm 1,

Oe=a-L50
pt—op + wt—0 ne
Then
1op-a 2p2
T T P T )
B P

and the automorphism of € (Q)) associated to the unitarian homo-
tecy U coincides with the inner automorphism defined by

i)

T ol | A P SIS S

a = >—‘ Q (xr'j)" FQ (xr'g)w 1.9 (r;) BRI

and the sum exiends over all combinations of % indices.

Lemma 2. When K bhas at least n elements, the necessary con-
dition for an clement ¢ € CY () to belong to D {f) is that ¥ com-
mutes with r, 4= 1,2, ..., .

Proor. By definition D (f) is elementwise invariant under the
automorphisms of C*t{(Q)) associated to the homotecies of f,
and therefore, in particular, D (f} is elementwise invariant under
the automorphisms associated to the homotecies of norm 1. This
means that the elements of IX{f) must commute with « for any
value of u € K. Since p* and #, belong to the center of C+{Q),
the elements of D () commute with

otpcb ooopnroy forevory o KL {1

i
i .

When K has at least n clements if we give to g s —1 different
values and different from zero, the expression (1) will give us
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#—1 elements belonging to the centralizer of D) mC*(_,O_,)
These elements belong to the vector space dver K .genetated by
a7y wos oy and are linearly independent since the” detefr'tﬁn!aﬁt
of the matrix formed by the coefficients is a determinant of Van-

deermonde different from zero, Therefore the
binations of

of D {f).
Given a homotecy Ty,p0, where « -+

B 5 0, since the automorphism of C+ (Q) associated to this homo-
tecy is the same that the one associated to

are linear com-
these clements and commute with the' elements

[a+BﬂTﬁ‘]-m 25~ 14

we can suppose that B == 1. Let
/

N{e 0 =o®—g=3% and P=K{}3).

We consider M as a vector space over I and make the exten-
siott M, = P, M, so that M, is a vector space over P. If we
call (J, the extension of € to M,, it is well known that

CLO) @ P == C(Q)

((“:f. [5] 11.1.5); when V¢ K, P = K and CQ) = C{Q.. EVel‘]lr
similitude S of Q can be extended in only one w
S of Q..

By lemma 1 we know that the automorphism of C+(0Q,} asso-

ciated to the orthogonal transformation

ay fo a similitude

Xy U ==

o
E

Vi

iUy 3 U

Ml P
Vfa ¥

0 has any norm and

erefore ‘the ‘automorphism asiociated: .ti):"fU

“inner éutomqr’phism'deﬁlleél"-b”y_ PRy

= 2 ﬁ,,m (Vﬁwﬁﬁtx)"—}— (V 3 I-}_
HVEE) T e

On the other hand the antomorphism of ‘G (@3Y assotiated:
o U is the same that the automorphism. associated to W =UTys.

% U =ax;ty; y:U=aptor;
This means that the element » € C* ({),) defines an inper auto-.
morphism of C*(Q,) which induces in C* (Q) the automorphissit
associated to the homotécy T,,e. Therefore the élémeﬂ:té" of
CH{() which commute with the r, are left invariant by the auto-. -
.morphisms associated to the homqfecies Te.e, hence »they--;béfdn;g
“to D{f). We have proved then. i

Lemma 8. The condition of lemma 2 is also sufficient.

©*When ¥54 K it is easy to find the element of C*(Q) which
defines the saine inmer automorphism that the one de‘ﬁnedxby 3
For, since i, is in the center of C*(Q), # defines the same inner
‘automorphism that ' * '

P o I
ve= e {f A e | T
4]

Taking in account that
=)

5 ?',,m(z Qo)™ Q)7 e, oy, }’;,,)(Q F)t e

g — V5 i
T .

. O () L x, ... 1»{{_;;}})2 enoand (a1

we have

v /7}4 " _ -
S—— ( LY VY e VB
2]

Flas VoY T = VY bt 2,

therefore w € Ct{(()).



(xi) 1

,Q (x ~—1)“15‘1J’1 x‘z?a xt"—ly=—-'i x,. ;

:t’;,JJ;
n:a

= 'Ifﬁgfe‘_i é're' :

:[‘Ilerefore if an eiement commutes with 'rr it commu—-.-
~tes’also w1th rt, sincé the sy, i =1,2, ..., %, arc linear combind-
tion~ '_f powerq of r,. When the cl}a,racie1zs‘t1c of K is zero or
P >'n, ,K has more than elements, hence we callystablish .

G {0 2= C Q)@ F

is also a tensor product of quaternions, but now the quatermions
dre taken over F, that is, '

LEMMA 4. If thc clnracier;stm of ¥ is zero or greatsr tham
(M F), the algebla D (f) is the centralizer of 7, in C ().

C (Q!') :':———;‘((1 H zl"}"xy Fy y!)i*")l @F e ®F ((1 s Moy Ty VP”_ 3 K .j"?:)l?)"'

“Since

(=1, i) = 21 (.2,5)2
is a square in F there exists an isomorphism of each ome of

these quatermom onfo the algebra F,, the total algebra of 2x2

‘matrices with entries in F.
Taking a suitable isomorphisin, the element

- Now. our, problem is to find a suitable representation of
C(Q) so- that we. can determine the centralizer of », in C{Q}.
ie: ,Vthe algebra D{f). We will make use of tensor producis

o whose properties can be studied in [3]. -

~+ " 'As before we suppose that (} is the quadratic form asqoaated

“to the non degenerate hermitian for § defined on'the vector space

- M over the field F = K {6) and that x,, x,, .... %, is an orthotro—'

nal basis ¢f M with respeci to f. Then we know that .

Q () =1 01 w7 € C Qe

whose square is equal to 1 is mapped into the matrix

1 ())
(0 —1)

: gt et t ic units
1 we denote by e}, /%, €5, € the matric t

10 0 1) (0 n) (u 0)
(0 0)’ (0 ol V1 of \0 1

2

is an orthogonal basis with respect to Q.

We consider M as a vector space over K. make the exten-
sion M, = F ®: M and identify I o1 with x. Then the ele-
ments (2) form an orthogonal basis of M, with respect to Q..

*The algebra C{Q) can be cxpressed as z tensor product of
quaternions over K. We define each one of these quat rnjons
by a hasis of the tvpe 1,4, 7, k. We have then

we can write

C{Q)

(l y . Vi ;II)T (‘:Qh P :()g,\l: (} REZTRUR Pr‘ -1 —‘":‘_T’;}; .

(1), - D (6~ € R - e (1

'

b1 2y




he coefflc:em: Z e of w’ 15 a sum 01' elemen

; T :
d- the number of —1.is rfthf& n‘n:lnbe
at P.. Therefore the ccefﬁcmnt of 3

of elements 2- m the -
13' nw2b and )

-

Zﬂ“‘Q ) 925,-.3;-. N

4t§1e clements of F,, defined 5}' -'" o T ‘ is represented by the diagonai matrix

(el:‘[:)l @F(Eji)z ®F“.'®;"(ej':);,,3' \ #j, 7’--";'ﬁ1;2; | J=1, 2,.-;-,';1..: . ; B = diag {#, 7”"*2"’,;.”'_. 2, eie; n—;‘Zj,‘...,r—m?z)

It n et ' . o .
is readily seen that the 2*" ¢lements “, m i form a set of where there are (’z.) elements equal to #—2j 7 =0,1;..,n
) - 7

matric units for 112,1. Let is order the 2¢ sets : o o Then the element

Py={m,, w29, - ., 00}, V . 7 b3
K y Wugy 3 Py == (2, P E
” _ =2 Q=)
two=-1,2, in such a way that the set with s, elemcnts'(equai 2
preceeds the set with 5, elements 2 if 5, <Cs,, and among the
sets with tl - ¥ 2w '

. he same-number of 2 we take any order. We make B’ = diag (71 B, r — 8, .., —m 0)

‘is represented by the matrix

- whose characteristic potynomial is
if the sets P, = (m,, m,, ..., m,) and P, = (hy, by, ...y hnj ;ire in (n) . (") [JL] (”)
the rth and s-th places, respectively, in the given order 3 ’ : : 2 , _
. H 3 . - o : L . — o 9
With the chosen basesfor . H (x iz — 27) ﬁ) (f 4 {n—23) f") 1 (x (n é) P)

Foh @ - @I
and E,, the element 7' Q ()77 #; 9, has the form

e B s ®("} — fg);@ I S O S W= Z iy M)

M

where ¢, is 1 if the set P, has a 1 in the i-th place and ¢, is —1
if it has a 2.
Then the element

"
2 ”

ﬂy‘{ Q - I;'J’x' e [ Zci::. i i
2'1 E E if n is evemn.

el sl Aie=d }
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The matrix . - : ' A -
, , “Leét B be the image of », in a 'representation-of: C(Q) onte: =

Y o dine [ ' S w3 B will be also the image of », in a representation:'of ™ .07
B .:dlag(%’alv‘:__"a:'p~--,01 ]) 2.’ . - g@ 1 . . e

CQg) = Fypn 2 K2"®x ¥

Since there exists a. representation of C{Q,) onto F,« which maps
o dnto BY € Kye, BY s simitar to B in F,and therefore it is
also similar to B in K. Hence there exists an isomorphism of
CC(Q) onto K, which maps #, into'B”.

Now we lhave to find the centralizer of B” in K,»~. We con- s
sider ¥, = as the algebra of linear transformations of a vector
space N over K of dimension 27, As before we suppose that the
.characteristic p of I is ¢ or greater than =.

The transformation B” is completely reducible. Its irreducible

( 0 1
L Wy ==

0 Me—24p0 0)
it

and o, appears( ) times if 713 - -
S i n{2 2
15 similar to B’ since it has the same elementary divisors. Mo-
‘reover B” is a matrix with entries in K.

Let us study now the simple algebra C(Q)) whose center is

K, since (M : K) bas even dimension. We have then

r

1 ¢ w times if 4
2( ) imes if 2= -

" components belong to 1+ classes of non equivalent irreduci-

ble transformations defined hy the matrices «g, ay, ..o, -:a[ . 1
Let us consider N as a module over the ring A generated by
ithe transformation B” and the scalar multiplications and expréss

where R is a division algebra of center K.
On the other hand we have seen that

the A-module N as a direct sum

;]
Z &N

Fusdd

C) R F = C{Qp)

which shows that F is a splitting field for R. Therefore

(F K = 2is a multiple of (R : K} (see [2] cor. 8. 3, (). This
shaws that either (R : K) =1, R =K or (R: K) = 4 and R is
a quaternion division algebra over XK.

It is immediate to see that both cases are possible. We are
goig to consider then separately.

‘ g
of its 1 +{ 5 homogeneous components. These components N,

.as A-modules are isomorphic to vector spaces cver I = I (0) of

Case 1: T = <, [ {Q) o f(: B . 72 . wl. . . 17 1
N We have seen that in ( (2= V., the element dlmension(j)[(/r =0 1"”’[2- if 7 is odd, and £=0, L., g

it w s even, {or in this case the homogeneous component N,

;‘1:.}_; QL= s direct sum  of the irreducible submodules corresponding to

0 0 . . .
Lo, ﬂ(o O)" is jsomorphic to a vector space over X of dunen-

. o4
sion .
#2fd

The centralizer 1 of A in the ring of endomorphisms of N

can be represented. by the matrix

.

o .
B = diag (ac, R




cons1dered ds an addltwe group comcxdes w1th the centralszer in
the algebra of linéar rt1ansforl‘ﬂattcms “K,”. since A contams the
‘scalar’ multiplications - by elements %€ K. This means ‘that
D =D{f). Moreover D'dg an . algebra of linea: transformatmns
is completely reduc1b]e LY has thie samie ‘Homogeneous compo-
nents that A {see [14] theorem 61, 1) Therefor(

Lwe ,d]éiﬂt to this subaigebra the element 6 12-4 £ F,-r where.__
is the unit matrix, we get the algebra

nﬁa@ﬂ&ﬂ&ﬁ~cw®dmf@ﬁ

- De=D{f) = 2‘@14 if we==2y4 1, and

f={

B ’ r—1

D =D (f) =~ 2@1( @1\) if == 2

It has been proved‘ before that there exists a representation
of C(Q,) onto I, which maps r, into

i=0 -

B! = diag (70, ..., (2 — 280, ..., — 526

In both cases the dimension of D (f) over K is equal to and therefore », can also be represented by the matrix similar

'to B’

”

(=200 )=

£=0 f =

B’ == diag (# 0, — n ¥, ..., (z — 290, — - 240, .. )=

= diag(nty, (1 — 2 75y e (2= 28 s 00)

Case 2: C(Q) =Ky~ ®« R, where R is a quaternion divi-
sion algebra over K. By Wedderburn theorem for finite fields
this case can occur only when K has an infinite numnber of ele:
ments.

where there are (az) blocks of the form

H

: . fr—29)8 ) o
Since B is a splitting field for R and (F:K) = v{R'K), R (”“2”“2( ¢ —(—200 T2
contais a field isomorphic to I (cf. 2] th. 88.A (3) and th. énd
7.3.C (4). We denote by i, the element of R such that §,* = -
There exists an isomorphism of R considered as an algebra —1—( " ) i P
over K onto the subalgebra over K of F, with basis 2 ?.1/2 2

Let E be the image of r, in a representation of C(Q} onic
S F,a. Then E will be also the jmage of r, in a representa-
tion of

(1 0) - (9 0 0 1) 0 0
7, o=
(VA 0 —a)’ (a o) (———r;.fJ 0)

where « € K is such that there exists an element i, € R which sa
tisfies 4%, = «, = —1, Ty

CQe) = Fon=x S @ F

Therefore E and B~ are similar and there exists an invertible ma-

Using this representation of R and taking trix M such that

©MEM-G M€ Fy @)
W AR g 1,2, 2 1,2 Be=MbMTh o Meh
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Ghto S that we have defined first, B” is the image of P
’ : P s

where

My Me €S2 Ky @R, . - | C
U . ’ ,. Lo o . _. . - P = diag (yz' 52 —-—2’ .. vy FE o 22‘, .._.)E ‘]'(-En.'.,

Substifiiting this ‘expression in’ (H).we get

) for any z, i. e,
4

and the number of elements % -—21 is (

B M, 0 B My==M, £ 1M, T, ‘
where . _ ' S : o o . ' ) # :
} o 3 ‘ z‘“““O\lx"-s[}EJv s
B M, ME€S -

. . . o, . . . H
if nis odd and for any ¢ :1:“2"" if # is even, since for i = - the

. e ) 7 - ) ._\ . 1 N
-0 B My, 6M, E€6S. . number of element equal to n—-24 =10 "g 'ET( 7;2)_
. , S ; ; ) > \nf2 .
Therefore " - ) ’ 2 Therefore in this case the algebra D (f) which is the centra-

2 and 1:3” M. = M, E Yzer of ¥ Rl 11 S22 Ko ® R ohas the following structure,
¢ p = Mg 15

-and in general LT D(f)gzj@p .

]

27 1. and

i

B’ {a; M, + a; My) == (@, My + 2, M) E,

3 H ) i - ro-1 N
where ¢, and @, are indeterminates. . D (f) s Z &F  ®BR i =2
The determinant of g, M, + a, M, is a homogereous polyno- =0 ") - I

mial in a, and @, of degree 2* and not identically zero since for ’ :
‘@, =1 and @, =0 is different from zero. Since K has infinite_

clements, there exists value X, », € K for a,, a, such that As in case 1 the dimension of D (f) over K is

2

y SRV ' : SN o ; 2
det (h, M, -y My) = 0 _ , \‘(5) — ‘(”)( ’ )M( )
s ’ : mace {:n i 12‘0: o 1 A

i

therefore
B == (g M, - %y My) B (00 My %y M) 1 We sum up these results m:
TurorEwm }.—Let 7 be a non degenerate hermitian form on

Hence #, is mapped into B” in a suitable representation
the vector space M of dimension n over the field T, J the involi-

onto S C F,n.

In the representation of tion associated to f and

C{D) =2 Kym- 1 B R _ Ka=inlo=a «€F 3T,
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Thgn if the charateristic o_f,F is zero or greater than m, the alge- : f.n =27 If c€D(f) we called ¢° the spin representétidﬂ of ¢;

- : 9 f ' ' ’ ) ;

bra D{f) bas dimensim‘i( i n)over K, and
: a1l

R

he element r¢, must be equal to

r—1

s ' ' ' . | B —24)01,,

F=0

zf ne=2r—71 or n=2r or to a sum obtained from this one by
71 . substituting — ¢ for some 6. The antiautomorphism * of D (f) de-
—— . M y - . - - N - - - !
D (f) :21 ©F . eT. if n==2r, - fines an antiautomorphism in the spin representation which we
im0 (:) still denote by * and it is defined by (c")* = (c¥)°.
Let v be the antlautomorphism of the spin representation of

where T can be either K(,,) or Rl(”)’ R a quaternion division D (f) which takes any matrix belonging to F(,,) into its conjugate

r 2%

algebra over K. : ’ transpose with respect to the automorphism J of I and a matrix
belonging to T into its tramsposc if T = K(”)and into its conju-

i

-

gate franspose with respect to any involutive antiautomorphism

§3 : " 17" of R leaving invariant the elements of K if T =R (,,)
2 A7
Now that we know the structure of D {f) when the characte- . The product of the antiautomorphisms * and y is an automor-
ristic of F is O or greater than (M:I) we see that in any of the _ phism of the ¢pin representation of D (f) which leaves invariant
possible cases the dimension over K of the center of D (f) is the elements 1 and r,°, for, since 7, has degree 2,
# + 1. Thercfore the center is the vector space over X with Dbasis ! :
Lir, 7o oeny rn"which coincides with the algebra over K generated i (”?}*TZ ((?,‘;'-')5)7::{(__ ?.1)5)7__: . (rj’)T .

by 1 and »,. .

The involutive antiautomorphism of € {Q) * leaves invariant the
homogencous elements of degree 4#2 or 4w + 1 and fakes the
elements of degree 4 + 2 and 4m + 3 into their opposites. Sin-
ce D(f) is a homogeneous subspace of C(Q) such antiautomor-

Hence the center of the spin representation of D (f) generated
by 1 and r, is left invariant elementwise by this automorphism.
Therefore, since D (f) is scmi-simple, this antomorphism js inner.

. . . . . . . . Let
phism induces an antiantomorphism in D.(f; which we are going

to denote zlso by *.

7o I

Tet us take an isomorphism ¢ of 1 (f) outo >TEBI“(‘) if
=y 3

- 2y --1, and onto

Bt
S aF, @
250y

fe

where (17} € }"7(,{) fori=0,1, .. ,[gw} — 1, fP)[.j] € F(,.-)
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.

= 9 . P
= 2y + 1 and If (Q): is a skew-hermitian matrix, let us suppose

1) (Q)€F. Then 0(Q2): is a hermitian matrix and defines the
ame inner automorphism that (Q),.

2 (Q)rER

be an element which defines the inher automorphism *y. of the 2()
spin representation of D{f). Then, lor every ; iiduced by v in R

(P)[:] €T il n=—=2r,
3 .
Then instead of deﬁan' the anti- automorplusm
1 fn
+() |
[] . the involutive anfizutomorphism J° we define it as the antiauto-
morphism taking any clement of R (”)
' ' T\

“with respect to the involutive antiautomorphism J* of R defined

by the conjugate transpose with respect to
into its conjugate transpose

cas follows, & = a0 a for any b € R, where ¢ €R is such that
. . ¥
(@)1= A" ==P=1AP = 37 @ (P);? (A): (P @ = -—a. Hence we have now

€=
’ ' g A" =g, W omma b g ,
If we denmote by Q = ¥ &3 (Q): the element P7 =% q (P)7,
] [+] _ , ﬁ AY = () (AN () = Q) a (AT, @ 1 () e
AF = QAT e (O (I (A, = @ (2 Q=0 g
== (O a (A @ (Q) S
It is a well known question fo show that P can be chosen in ' . where (BY stands for the transpose of {B). The matrix (Q),a is
such 2 way that the (), are either hermitian or skew-hermitian hermitian with respect to the new v, for
matrices with respect to v. Tor, since * is an involutive antiauto-
morphism ' ({Q)f a)‘[:({Q)’r R)z" = e @ @~ QY 2= (), @
A o (AR e (QATQ = QO TAQIQ ! =
taking into account that {QV) = —(Q),. But (7} shows that for

:Z 3 (O (7T (A (), 2 4 (A, o this v (Q), e is the matrix which teplaces {Q),.
i ‘ : 3 Q)€ K, . Then there does not exist a symmetric. matrix

. 3,71 is a ceniral element the simple algel i
that is, (Q).7 (€))7 is a central element of the simple algebra to which can replace (),

which it belongs. This implies (Q) = ¢{Q),, where «€F if
(), € F("_)‘. and € K if () el

We have prove then.

Turowew 2. Let us assnme that f and F fulfill the conditions
of theorem 1. Then the antiautemorphism * of the spin represen-
tation of D {f} has the following form, if the matrix

is a hermitiz atrix with respect fo v and has an inverse. Mo
is a hermitian m _m;\ with respect to v and has a : : A Z@(A)‘
reover () and (1 + ) {Q). define the same inner aulomarphism.

Tf the matrix (), is not skew-lermitian with respect lo T,

+ 1

+ -1 and therefore

{0 - (=

Fu=n
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belongs to the spin representation,

: g
A= 3T (O (AN Q) = Q ATQ)

i=0

where (A)[‘,is the conjugate transpose of (A), with regpect to the
automorphism identity, J or an involutive antiautomorphism of R
leaving K invariant elementwise if (A), belongs to K( ), F( )
(”) are hermi-

under a suitable choi.

(),
is symmetric

| | ()
and wben skew-symmetric,

If all the (), are hermitian with the possible exception of

or

R1 ("), respectively. Moreover the matrices (), €F
3

tian with respect to v, as well as (- €R (‘)

ce of the antiautomorphism of R. On the contrary if {N,eK

(Q)- can be either symmétric or skew-symmetric.
In cbapter I § 2 we will see when (M, €K

v

(Q). € K(”) which might be skew symmetric we call

3
Q= D" Q)

L]

matrix associated to the antiastomorphism * in the representa-

tion s.
Let us take a different isomorphism « of D (fy onta
!
o
2 ®
£ty

()

if w2~ 1 and onto

if n=2r Then cach component of the matrix ¢% = T 3 (A), is
similar to the corresponding component of o® = X @ {A), or, if

to J. That is,

" where (N), € F

TH SPIN ‘REPRESENTATION OF 1HE:UNITARY GROUE

(A); €F, , might be similar to the conjugate of (A), with respect

()

(A), =N, (A (M7 i 2re=n and (N, €R,  orK

70 0

-
~and for any other 7 either

(A)r = (M) (&) (N);™

or
{A); = (N} (A); ()
We denote by (A) the matrix {(A), if (A}, is similar to (A).,
(A)¥ = (A1), if (A); is similar to (A7) and make A® =T B (A},

" where (A)r = (A), if 2r = m. Then

(AN == ST (), () ()5 AT=N-TASTNT and
(0% = A% = N (A% N~ 1 == N Q A6 Q> N= 1 == N Q" NTN "7 -
CASTNTN-TQ e N -1 = (N Q¢ NT) (N=7 Asv NT) (N OF N7yt
e (N QF NT) AT (N Q2 N1

I {(2); is hermitian with respect to v, {Q)57 is also hermitian.
Therefore N Q- N g a matrix associated to the antinutomorphﬁsm
* in the representation . By choosing a suitable ¢ the matrices
(N); (O (N)Y will be diagonal matrices if 2@ #; for 2¢ = u,'
€. 15 the identity and therefore (N}, ()% (N)." and ({J), are co
gredient relative to v (see [13], p. 149).

Tet us suppose that () is a matrix associated to * in' s.uch a
representation. Then we see that a matrix ELSSO(‘.ia'E.Cd to ¥ in -any
other spin representation is a direct sum of matrices cogredient
to the components of () relative to v since ()% =(0). if (). is a

diagonal hermitian matrix.
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When 4 = 1 the elements i . g

Cuarrer 11

P . o COARFS A F A XA ViV . i"jﬁ E" A
In this chapter it will be proved that D (f) is thé envelopping forﬁa“.ii. basis of the space of degree 2 of C(Q).

alge_b,ra--qver .K .q[ the e1c-:,ment§ of the Clifford group mapped by : '.l"he gu]quacé of the index system i4, 4= 1,2, .., #, i. e., the

¥ into the unitarian transformations of I "I‘-hgn the simpie, compo- o subs ‘ v #, v, belongs to D (f), for it is obvious that

nents of the spin representation of the unitary group wiil be knows. : subspace generated by # 3, belong P

As before we assume that the characteristic of I

than (M : ) and that f'is non degenerate.
First of all we compute the dimension of the subspace of I (f)

of degree 2k, = 1,2, n It will be always supposed that the

elements &, r,, ... x, form an orthogonal basis for f and that
¥ o= 0. -

i ent commutes with
18 zero or greater 5“(.:;] element ¢ t

ry= Q)

~and then lemma 3 of chapter T asserts that it belongs t(? D). As

to the clements of the index space #j, i< f. we are going to find
" their images under the antomorphismof C(Q) of order 2. <e. ass0-

o clated to the homotecy T of ratio — o, We have

The elements - o B

()P e=—p () (1) =

"

" where g, §; =0, |

(= Ty Ty =

and  Me b N3 == 94

T2

and since T4 bas order 2, -
form a basis for the subspace of C(Q) of degree 2. Let us write

in the order in which they appear in the expression (1) the subindi-

(—ria) =iy and {—a A
ces of the clements with exponent 1. We get then for each element '

of the basis 2 set of 2/ numbers between O and = + 1 in no de-

creasing order and where each number appear at most twice. We Therefore the elements

will call the set of 2/ numbers deduced from an element of the

form (1) the dex system of such element and will say that the Mo G G A e

csystem has degree 2 /1.
Let us divide the set of clements (1) of degres 24 into subsets

. ; _—
are left invariang by the automoerphism zp and the clements
with the same index system. We consider the

VECEOT spaces over
K generated by cach of these subsets and get'in this form a de-
composition of the subspace of () of degree 24 in a direct

sum of subspaces which will be ealled the subspaces of the index

Gty

R ISR SN

. - - o ¢ helong
. o it opposites and henee they do not I3
system or index subspaces. Of course this decomposition depends o - are faken by e dnto their opposites a
on the chasen orthogonal basis. to 1D ().
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Let us see now that Uy, zf,; are invariant under the autonior- -

I g € D{f), g is left ipvariant by the automorphism associaled
phism tq,49 of C(Q) assocxated to any homotecy Ty, ze. We have

to any homotecy. For what we have just seen it is clear that this

< is possible only if its projection on any index sui)space is left in-

u;“t‘“z(x,-}? P 2% 2 Kt L I ((qi 4B ) (a4 pﬁx,)— : ; © varfant by sach automorphism. This implies that these projections

@y 0B 2 (a4 B}’j)) m(a,, — B ((o:2 — o8y : ‘!’Jeiolng to D (f). On the other hand it is obwc..us‘ that if each pro-

_ jection belongs to D (f), g also belongs to this algebra,

(#03j = 3¢ 35 - (2§ — B o) (o x,--xj +}’"}’-"}) = _ 7 We have, then, that the decomposition of the space of C (e)

T Y T ' ‘ of degree 2} in a direct sium of index subspaces induces a decom-

= (2, %; — o~ [";,i},}_)."u+fiﬁ____(q—9_ — B2 p) "1((11 x4 By ' Position of the space of degree 2k of D (f) in'a direct sum of its

@x; By — o (ar, . ) 222} e index subspaces. In oth.er words we could say that_I_) {(fis a ho.

’ Y7 ! rit el o] z,)) - mogeneous subspace with respect to the decomposition of C{Q}

=ap &y — 0y =y in index subspaces. The space of degree (O is the space of the

vacuous index system.

Therefore any element of C(Q) of degree 2 invariant ander the . The dimension of the space of degree 2k of D(f), h=1,2, ..., n,

automorphism 1 beloags to D (). . . can be computed when we know the dimension of the index sub-

The computation that we have carried out to check that u, and © spaces. First of all we remark that the space of degree 2n-—-24

vy, are invariant uander the automorphism a0 is independent of - has the same dimension that the space of degree 2 4. For, if we

the value of the indices 17. It is immediate to see that this is also multiply each clement of degree 2/ by r, we have a 1—1 linear

true for the elements of any index space with indices all different. transformation of the space of degree 21 onto the space of degree

. ; 2n-—-2k. Therefore we neced to compute only the dimension of
Lemma 1. Let g be an clement of degree 24 of C(Q). Then ; the spaces of degree 2 when 2k < n.

£E€D(H if and only if its projection on each index subspace be- We classify the index systems of degree 2k into & + 1 families
long to D (f). ‘ :
N . A
Proor. . Let : - Guge Gyay oy G0
x;'_y ' f :,u"" L. o2t Jf'u . - ; : Gf,, being the sct of index systems in which there are i and only ¢

indices which appear twice.

be any element of degree 2% The automorphism of C* (©) asso- .

fated to the ! ;T i ; L Leymma 2 All the index subspaces of D (f) which belong to
clated to the homeotecy Ta,ap of f takes this element into another L e
_element of the same degree given by the expression N - the same family of index systems have the same dimension. Mo-
reover the dimension of an index subspace whose index system

: 5 belongs to the family (7, equals the dimension of ap index

(ax ﬁy} {a 3, —{—Bpx.)‘ {ey ...l.u’gox}o" = . - 2

' ! LR e subspace whose index system belongs to GPueen-

Taking into account that in the result only appear terms of Proor. Let us consider first the family G°,,. that is, that fa-
degree 2Jt it is easily seen that we get a linear combination of mily whose index systems consist of 2/ different mdlces. This is
elements of the set (1) ali of them with the samne index system ' : only possible i # > 25,

that the taken element, Let fiootan: T iy be two different index systems of
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(1 s and let us take a basis for the index space correspondmg to -
the~ first index system and suppose that each clement of this basis-

is expressed as a linear combination of elements of the form (L)
belonging to that index system. If in this expression we substitute
&y for 4, we get linearty independent clements of the index sub-
space corresponding to the second. index system. Therefore the
dimension d of the subspace defined by the first index system is
less than, or equal to, the dimension ¢ of the index subspace
defined by the second system. By symmetry d' < d and hen-
ce d =d.
et us take now an mdex system of the family G,, and sippose
that §,, 4., ..., j» are the indices which appear twice. Then any
clement of the corresponding index subspace can be expressed
as a product of

by an element of degree 2{h —#) of the index subpace defined
by the system obtained from the index systen: we started with by
leaving out ’

Pty Fus don oy ey don Jo

Therefore the dimension of an index subspace defined by a system
of the family ,, equals the dimension of a subspace defined by
an index system of G-

Lesma 3. The dimension of the subspace of an index sysiem

9
of G, is ( j‘].
7

Proor. We are going to usc induction on b, starting with

(}
even though we take (”] = 1.

Howe know the dimension of thé subspace of an index sys-
tem of (", for v <</ we can compute the dimensicn of the spa-
ce of degree 25, for it will be equzti to the sum of the dimen-

stons of the subspaces of all the index systems of degree 27.

THE §Pin RECRESENTATIDN OF ‘tai 11

The dimension of any of these subsp'lces equals the d;mensmn
of a sabspace of an index system of Gl
The number of different index systems of the family G, is

( " )’ where n = (M : F) is the number of different indices. In
2 7

general the number of different index systems of the family

n)( it ) ’

(.ﬂ‘ L(r— sy~

T.et d,, be the dimension of the subspace of an indéx system
cof G°,. Then the dimension of the space of degree 27 is

oy {72 W —1 .
e dagr -
far ‘ (.') (‘2 (7__ f‘)) { \

el

G, 15

I r =1 it is trae that the dimension d, is

)

hecause the elements z,, w,, form a basis for the space of indi-
27 the dimension
ces i7. I we suppose that for r<Ch d, = , the dimensio
] -
of the space of degrec 2r must be

1 [ [ x

i=0
»

N ! {r 1)
:ZO'E'!(;;W;:)! B =W =

7o

(2(,4“7)

T 11
DI et

f=0

=(=0=

?
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i

In lemma 2 it has been seeri that ali the mdex subspaces
corresponding to any index system where there are precisely 2%
‘md:ces which ; appear only once have the same d:mensmn In

24
) Let us de-

7

. :
Now let us prOve that if dzr =.( r) for » <h the formula is
¥

also true for # =.h If (M : F) = 2k by theorem 1 ‘of chapter I
we know that the dimension of D{f) is

) ' (; ﬁ)___é (-22_1;)2%'2’25*(2;,:)2 + (2;)2‘ . “

i=0

.lemma 3 we have proved that this dimension is (

ote by E, the dimension of the subspace of D (f) direct sum of
1 the index subspaces whose index systems contains precisely
21 indices appearing only once. ' ' '
‘Since there are n different indices the index systems can be
divided into sets of index systems where each set comsists of all
the systems with precisely 2¢ indices appearing only once,

== () 1‘ r
==, 's"'1[_§“']'

On the other han{i since in this case e, = €otun.ny, the dimen-
sion of D (f) taking into account (3) is

A—1

Z’ez,wzz’eﬂ,+m_2z( )+eu. (B)

i=0 =40 =9

Equating the expresions (4) and {5). which give the dimen-
le)
s

Hence

N
Z,L,—w(gn)-—

ey

sion of D (f), we have e,, = (

We know also that

A

-2 (2;) (22(2:)) (251: :})“Ld*’“ ®

If in (3) we make # = 2/ and r = h, comparing the first sum

'If we choose an index system of degree 24 with 2¢ different
indices we can get index systems where these 2% indices are the
only ones which appear only once by adding to the chosen system
0,1, .., n—2i pairs of indices picked up among the n— 214 in-
dices different from the given ones, In general we can add »

. /.
with (6) we get d,, = (; ) which proves the lemma.
2

Now that the lemma is proved, expression (3} proves, the
following

. L fm— 20
pairs of indices in (’ ) different ways; therefore from an
r

Tusonew 1. The dimension of thé space of D (f) of degree index system of degree 2i with 27 different indices we get

ah e (” #
is (/Z) where n = (M : F),

2"2] (ﬁ _9 i) o
N

The dimension of the space of D (f} of degree 24 has been
computed taking into account that this space is the direct sum .
of the index subspaces of degree 2. If we sum the dimensions
of all the index subspaces we get the dimension of D (3. In this

way we are going to get a formula which will be used later on.

index systems in which the indices appearing only once are the
the chosen 2i indices. Since these 2i indices can be chosen mn
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_(2 z') different ways we will get (2. ‘)2"‘2‘ different index systems .

in which there are 21 ipdices which appear only once. Hence

. 7”’ Qm — 3¢ 21
(2:‘)“_ ( z‘)' -
™

£, we get

. -
. “f

Summing up the

LeMMa 4

It will be proved siow that the elements of D (f) of degree 2
form a set of generators. In order to do so we will start defining
by induction canomical bases for the different index subspaces.
To simplify the notation whenr we refer to a subspace of the
index system of degree 2» with 2y different indices we assume
that these indices are 1,2, ..., 27 In doing so therc is not loss
of generality since we get the subspace of indices 7,, f,, ..., Jor DY
substituting 7; for ¢ and the computations that we carry out do
not depend upon the particular value of the indices.

Chosen a basis of CH{(Q) of the form (1), the index subspace
of indices 1.3, ....2m has as Dbasis the set of 2* clements ob-
tained from

{7)

writing &, or y, instead of 5, 7=1,2. ... 2m.
Since the number of factors is even we can write the product
in the form

{7)

. .
- (')21:: -t *21!!)

.
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““where £,_, ., can take one of the 4 different forms,

Loy Fap Foi 1 Voit Fagor Fair Yarmr Faiv
We adopt the following notation,
R A TR UL T FYSNEWh
— — b, -
U = U i T Faiy P A € LTS
P ™ Va0 7 Vg Fas —|—y2‘.___, Eyer
J— - A oa—1
ST e T R By T 0T Py Ve
and we get
: 1 1
Faimy Fypi ™= Y (@ - o) Ty Yoi== ey {ze: 4 ril;
1 8 .
Hai—y Fai ==y (o), Faeoy Faom= ol (8 — s
2 .2

Substituting these wvalues in (i) we see that any element of
(T} is a linear combination of clements

oy b (8
where t; can be any of the four terms w, z., r, or s, {onversely
any element obtained form (8) writing instead of f; any one of
the terms #;, 24, 1 or s, i=1,2, ..,m, 15 a linear combination
of elements of the form (7). Therefore the clements obtained
from (8) by different substitutions of %, generate the subspace
of indices 1,2, ..., 2. ,
The nuwmber of such clements is 4" = 2°% This number being
equal to the dimension of the subspace of CH{Q)) of indices
1.2, ..., 2m, these elements must he Tfinearly independent.
l.et us denote hy
Wy 2, Ty i, {9)

g <y ZU:_




REVISTA MATEMATICA HISPANO-AMERICANA -

It

the set of ‘om Jifferenit elements obtained by substituting u; .

R T

Cor w o for wyo, . As to the indices we assume that
2 -t 3; 273 ‘U’ :

fpr gy e fpe 18 @ TeOrdenmation of 1,2, ..., 2m such that,

tyjey < lajs g=1 ...,

A

Since for different values of j the i = . ‘s commute with
each other we will not take into account the order in which they
are wriften,

We will say that an element of D(f) belonging to the sub-
space of indices 1,2, ..., 2m is canonical if it can be written as
a linear comhination of elements of the form (9). It will be said
that such a linear combination is a canonical cxpression of the
element. It follbws from its definition that a canomical element
of D(fy belongs to the algebra generated by u#y,

Vi 02 o il A

Given a canonical element ¢ € D (f) of the subspace of
ces 1,2, ..., 2m writing instead of

its value in terms of the a3°s and v, s and taking into account
onl\' that C* () is an associative linear algebra we get an ex-
pression of ¢ as lincar combination of clements

(H

which differs from the expressios in terms of the clements

only in the order of the factors what can give place to a change
‘i the sign.

gy
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In the canonical expression of ¢ let us write instead of
"2)‘js".2'i

. =5 N )
Figg e ing T Siag oy Tiay T Thyy oy Sy

W“"aj*l"b‘ﬁ v o o ]
R T Y ATy

and express this swm of products of W, 's as a sum of products

‘of elements sy, ra; using only the fact that we are operating in

a linear associative algebra. Then the element that we obtain is

the element derived from the expression of ¢ as lnear combina-

tion of elements (10) substituting s, for z, and 7, by 3.

But since
Uj;= STy — T8 {I’zwu Ty, P P J’z;)( 2i-1 Vai T Feioi -Uz;} -
(Ta; 1 Yoit Vej—1 Izj) (Hpi g Zge b 07 Yaia Hail =
Py geq, gimy Hygei b Maioqmi Ui, 2i € D)
and

Vj; == 5 §q - P_' k 7y

e (U ey, 2i et D oas = 07T By g ey i) €D

the element of C+(Q) obtained by patting W, instead of
belongs to the subspace of D (f) of indices 1,2, ... 4m. Moreo-
ver, since 7 (or ;) commutes with any #, and 5, if 144, we
get the same element if we substitute s, and =, for », and v, res-
pectively, in the expression of ¢ as linear -ombination of cle-
ments {10) or as combination of elements (_7).

Leuma 5. From tlinearly independent canonical elvments of
degree 2 belonging to a subspace of Zm different indices we
can derive canomical clements of a subspace of 4w different in-
dices, which are linearly independent.

Proor. As before we suppose that the canonical elements of
degree 2m belong to the subspace of indices 1.2, ..., 2m. We
have just seen that if in the expression of these elements as li-
near combinations of elements (7T) we substitute s for x, and
7 for v, we get canonical elements of the subspace of ndices
1,2 ... 4m. Thereforc we only necd to prove that if the cano-
nical elements of degree 2 are lnearly independent the ele-




THE SPiN REPRESENTATION OF, THE UNITARY GROUR® = .= e -

115~ © REVISTA MATEMATiCA ILISPARG-AMERICANA

ments of degree 4w obtaingd from these elements are also hi- : substituiing », or vy  for 5;-;,,, m=1,2 ., k—2j, by cacli one
nearly independent, The linear independence of the elements -of 27 .
degree 4 m so ohtained f{ollows from the fact that for any m the

--‘.oi the elements obtained before we_:-get( )2""‘” canonical ele-

“4m different elements obtai ) ituting #., © . T '
re. i ; )ta;nfed from (8} by sgbshtut:ﬁg e Yo ‘ments of the subspace of indices 1,2, ..., 2k We say that such
7, or s; for i, are linearly independent. For, if the linear com- ‘ . e s .
SR ) i i . elements belong to the index family 7, ¢ ..o 2o These clements
binations of elements (7) which express the given canonical ele- L I . . . e
. ] . o até lincariy independent, for if there exists a linear corhbination
ments of degree 2m are linearly independent substituting in these _ L) 1
clements s, for z, and f o oot T v ind dent which equals zero the partial sums extended over the elements
; x; and #, for w, we inearly independen . .
elements ' 3 g . ¥ P : with the same factor of the form (11) must be zero, since the
) : clements containing # can not be cancelled with the elements con-
" taining %, , In each one of these partial sums the factor of the

LEMua 6. Every subspace of an index system of degre: 2r N o ) o 9
with 27 different indices has a basis consisting of canonical ele- form {11} is multiplied by a linear coml3mat10n of the ( ] } cana-
ments. Therefore such index subspaces belong to the algebra " mical elements mentioned above and it has been seen that such
generated by wy, @y, 1] " elements are linearly independent. Therefore all the coefficients
. © of the Hnear combination which cquals zero mmust be zero. In
Proor. Let 1,2, ... 27 be the index system. Since for re=1, o 27\ i . .
#,0, m,, form a basis for’ the suhspace of indices 1, 2, we are other words, the ( ; ) 202 capanical elemenis of th: index fa-
going fo use induction on r. Therefors we assume that the lem- mily 7;, ..., %, are ]iﬁaar}y independent. )

ma is true for 27 <2k Then it will be seen that it is true for
2, 2] or to be precise, we will sec that the lemnma is true
for 2y = 2k, if it is true for any r such that Zr < h.

fr
The 27 indices can be chosen in(g ) different ways, hence for
. J .

iy {27
. i we oet b2 3.
We take the 4™ elements of the form {8) as a basis for the each value of 7 we get (2 ;')(j) - elements. 1f we take «ll pos

subspace of CH(Q) of indices 1,2,....2k for m = h. Among . sible values of 7 we have

these the 2% clements containing only u's and s helong to _ ] 5

D(fy since u, v € D(f). Moreover these clements are linearly [2] Y 9 4

independent. : _ Z( ) ( ]) 9F e ( )
per AV A

Tet us choose 27§ indices, 27/, 4.8 . i, among 1,2, ... k.
elements according to lemma 4.
24 . . . .

cavonical elements are linearly indepen-

2

In the( '_]) canonical elements that by the induction assumption

7

form a basis for the subspace of indices 1,2..., 2] we wrile
2 ... 27 l.emma D : ~ dent bhecause il a linear combination of such elements is Zero

instead of . and T, instead of vp, m. p =1,2, ..
each one of the partial sums extended over all the elements of an

; )lmear]y independent canonical j index family should be zero. Since w¢ have just proved that the

Moreover these {
7

"‘J‘ ”

2

asserts that in this form we get(

. Y - : . R 2 K
clements of degree 4. Now let 7, ¢, ... iy De the complemen- : . elements of an index family are linearly mdependent. 1‘313( y/ )
L A7

tary set of 4. ..., 45 with respect to 1, 2. ..., b If we multiply each
- - - . - s s ‘l - M - Aty o . ( . E
one of the 2% different elements obtained from ; canonical elements are linearly independent and form a basis of
] o
. , the subspace of indices 1, 2. ... 2% which has dimension ( )
Pty ooty (ih ./;
1 2

hoo2f




ST I LRI SRS

A

. T : " . pmp seiy EPRESENTATION OF THE UNITARY, GROUF ' S
120 REVISTA MATEMATICA MISPANQ-AMERICANA . 7 -

TreoreM 2. The algebra D (f) is generated by its elements of
degree 2.

of the non-isotropic plane P generated by # and y =0 in t'ne;r
opposites. and leaves invariant the vectors of the subspace P1 or-
) : -thogonal to P with respect to Q. ' )

Proor. By lemma 6 we kuow that the subspace of any index : . The elements of the Clifford group mapped by y into this ortho-
system of degree 2+ with 2+ different indices belongs to the al- g -~ gonal transformahon are of the form «xy, 0 % « € K. Since “-4'3’
gebra generated by the elements uy, vy, ¢ <C§, of degree 2. is of degree 2 and is invariant under g it beloﬂg‘i to D (f).

If dis an element of a subspace of an index system in which '
there are 2+ indices appearing only once and ¢ indices appea-
ring twice, 4 is the product of an element of the subspace whose
index system consists of the 2¢ indices appearing only once by
the element

~On the other hand, if ¥ has more than 3 elements it is possible
to fmd e 0 such that 5 = ¢ + 2% is a non-isotropic vector.
Then the clements of the Clifford group mapped by y into the
‘symmctrics of | with respect to the hyperplanes orthogonal to
the vectors xy, zipdn § = L, 2 %, i < {, are :

d' = H i, Fip : oz (b ) (e ) = Gy b e 2 A gy (@i — v %)

we=1

where i,. ..., L ate the indices appearing twice. Since d” belongs where y, = 04, The algebra generated by such clements contams
to the aiuci) a G generated by the elements of D (f) of degree 2, a basis of the space of degree 2 of D{f), for
d beloungs to G.

Since (x; v.)* £ 0 belongs to the subspace of the vacuous index : (s v — V) 2 Y == Ui A V== 0 Qi) 25— o ) =p Q {x) v
system, the elements of degree zero also belong to G. Therefo-
re (G contains all the index subspaces and coincides with the alge-
bra D () which is direct sum of such subspaces.

“Therefore if K has more than 3 elements, the elements of the
Clifford group mapped by 7y -iato the symmetries of f genera~

Tueorem 2. The algebra D (f) is gencrated by the elements - te D ‘
of the Clifford group of C(Q) mapped by y into the symmetrics & " If K has only 3 elements, ¥ is the ficld with 9 elements and
of the hermitian form f. Morcover D (f) contains aiso the viéments : " there exists then an orthogonal basis of M with respect to f
of the Clifford group mapped by y into the unitary transforma- such that f (x,. 2} = 1 for any i since we suppose that (M:T9)
tions as well as the elements of C {QQ) which define inner antomor- ‘ is less than the characteristic of F, n<3. I (M:F) = 1 the
phisms which induce in C*(Q) antomorphisms associated to the ' theorem s obvious and if (M:F) = 2 we can take ;=1 and :
unitarian similitudes. apply the preceding argument.
| Now let us see that D (f) contains the elements mapped by ¥
into the quasi-symmetries of f. The quasi-symmetry which leaves
invariaat clementwise the hyperplanc H orthogonal to the non-
\«-ector v and takes a into (= 4+ B 0) x, where

Proor. To prove the first part, by theorem 2, it suffices to
show that the algebra over K generated by the elements of the
Clifford group mapped by y into the symmeries of f contains the

: : tropic
ace ree 2 and that, conversely, this space contains is0 .
51;1“0 (I)f (ngICCi of D {7y and that, conversely, fHis spac Nz + 80) = 1, is the image wnder y of the eclements of the
all such elements. 50 : s b
Tet I be the hyperplane orthogonal to the non-isotropic vec- form
tor x with respect to f, and let # be the symmetry with respect 14w
to II. Then the symmetry # as a transformation of M over K is e . ( @ CA gt xy),

the involutive orthogonal transformation which takes the vectors




i ggéi_gﬁ‘mﬂuﬁxd nxsﬁkwmim

y=8x 0FveK.

ngcg these elements belong to D {/) the second assertion is pro-
s ved: _tJEf;ause the unitary group is generated by the ‘quasi-sym-
- metries (cf. [8] or [9], p. 41). ' §
It only remains to see that D (f) contains the invertible ele-
ments of C(Q) defining inner automorphisms wﬁith induce in
C*(Q) the automorphisms associated to the unitarian similitudes
of f. Such elements are defined up to an invertible factor of the
form. @ + 7, since the algehra K+ XK, is the center of G+ o))
- .S{qce th_e automorphism s of C* (Q) associated to a unitariar;
similitude of f is homogeneous of degree zero, it must take the
element 7,, which is a basis of the space of central elements of
degree 2,.into «»,. But the component of degree zero . of {ry
7p 30, must be equal to the component of degree zero of v

) (ri’)” = (a rl)”, of up;
therefore a? = 1, ¢ = + 1,
If «=—1, since », is the component of degree 2k of r;
(2r1)® = — 750y, and ¥, = 5, Let c€C*+ (Q) and let us ‘ap/i);y

to ¢ the automorphism associ
s 5 ated to the homotec i
the element 7 defined by

T

g 2 b :
e S N LS

h

of norm 1, and then the automorphi C
s E phism . We get (cf. Ch.
‘ : g ( El 17

aepn®
P

=(( b o= b b ey
B G A S el (T Ll B
L el Y A L O L ) (" TR (L U S Ry f.)”r,,) =
=((— w4 =)

- e ({m— T S ;-,,) = (O B0
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hat 1s.

Lo ps® = STa—g0, (12)

. On the other hand if S is a unitarian similitude of f and Te.pe
‘a homotecy,

5 r‘a.+$ﬂ == Tufﬁ!} S_-

Let o and e e0 be the automorphisms of CH(Q) associated’ to
'S and Ta,e0, respectively, Then since S Tepzn = Tw,pe S we must
have s7w,e0 = 7a,p0 @ and therefose

crat§e® _u STacpo (13)
From (12) and (13) we get
(6=>-"e1+[5ﬂ — (Ca}’mmpa

and this can not be truc for any &€ Ct {Q) since = + B0 and
x-—~f0 do not differ by a factor 3 € K. HMence the assumption
« = —1 leads to contradiction. Therefore « = 1 and avy element
of C() which defines an inner antomorphism inducing in CF (Q)
“the automorphism ¢ associated to a unitarian similitude commuies
with #,. Then the lemma 4 of Ch. 1 shows that such element be-
longs to. D (f).

Tn Ch. I, theorem 1, we have seen that D () is a semusim e
7 .
subalgebra of C(Q) direct sum of 1 + [—zﬁ] simple algebras. The

theorem that we have just proved shows now that the spin re-
presentation of the elements of the Ciifford group mapped by 7
nto unitarian transformation of f decomposes in a direct sum

iz . . .
of 1+ ['E)—] irreducible representations.

We get- the same decomposition in simple represeatations if
we consider only the spin representation of the clements of the
Clifford group mapped by y into clements of the group Ut {f)
generated by the symmetries of f or if we consider the spin re-
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presentation of the group of invertible elements of C(Q) which
define inner automorphisms inducing in CT(Q) the automor-
phisms associated to the unitarian similitudes. Each unitarian si-
militnde defines one of this invertible clements up to an inver-
tible factor of the form o« & f 7.

§3

Tet us take a spin representation ¢ of D(f) and let Q) be a
matrix of the antiantomorphism * in the representation «. Then
Q is a direct sum of hermitian matrices, with ihe exception of
the component (), which when # = 27 and T = K(,) can be
ecither symmetric or skew-symmetric (Ch. I, theorem 2j.

If ceD () < CH(Q) defines the inner automorphism associa-

o
ted to the unitarian transformation U, let (C), i = 0,1, :l--—é-—]
denote the ith component of the matrix C = ¢°. In particular, if
2€ K, o = S (1), where (I), is the ¢-th component of the
unit matrix.

1f an clement ¢ belongs to the Clifford group its norm
cc* =2 €K, When ¢ €D (f) in the spin representation s

2

(e = = C QO = Z B (Ch: (Q): (CF Q) = > e (i),

P
which implies

Che Qi (C) = 2 {Q):- (14)

If w=2r+1, then {Q) €L .7, and the (Q)

o

are hermitian matrices with respect to y. Each one of these ma-
trices can De considered as the matrix of a hermitian form relati-
ve to a basis (cf. [181, pp. 149-50) where ] is the involutive aw.o-
morphisn associated to the hermitian form. Then the {C);

present linear transformations of the vector spaces on which the
hermitian. forms (Q); are defined relative to the given bases.

P " up spin XETRESENTATION OF THME UNITARY-GROUY

Relat:on (14) shows that these transformations are. umtanan 3«
militudes. Given s, the (Q); are defined vup to a factor 5€ K.

“Therefore we can say that the hermltlan forms (Q), are d.fined

by D{f) up to a factor 5, because if"we take anpther gpin re-
presentation we have scen in Ch. I, § 3 that the new matrices

() are cogredient with the (Q). and therefore define ihe same

hermitian forms with respect to mew bases.

When # = 27, what we have just said is still true for the’

{Q). if i 7 As to (Q), we know that there are two rossible
cases:

1) (Q). € R] (,) Then we can applied what has been said for

.

the (O ek with the only difference that now we have a ber-

‘mitian form on a vector space over a sfield of quaternions (see
73, pp. T-15) and J' is the involutive anti-automorphism asso-
" clated to the hermitian form.

In this case we are going to sec that (Q)r

2 @EK, .
(Q (.,)

is symmetric if 7= 25 and skew-symmetric i 7= 25 + 1. Then
a) if (Q), is symmetric we can applied what has been said
and the (C), define similitudes with respect to the symmeiric bi-
linear form (Q).,
B) if (Q), is skew-symmetric we have an alternate bilinear

“form. The (C), define sympletic similituades.

To prove that (). is symmetric {skew-symmetric) if 7 = Zs
(r = 25 + 1) we compute the dimension over K of the space of
elements of D (f) invariant under the anti-antomorphism *.

Let d, be the dimension of the space of elements of D H
variant under * when & = 27. Since the clements of degree 41
are invariant under the anti-antomorphism ¥ and the elements of
degree 4i + 2 are changed by this anti-aufomorphism in ther
opposites, by theorem 1, we get

To compute this snm we compute first

= >,

P ]

” 9

P,mz(ma}f(:’j)

£e20
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Hence B is-the coefficient ‘of #* in o 7 ' : - n
| ! (;z (;) + 1 _'-_-i #\? \ 1 2
; 2 z)+ 2 ”‘%(?) "é‘(r) 4

=10

;Z:‘(W 1)"(}:) % Zjl(?;) z/ =(1t"f)" (L2 == (1 wxz);*, ‘ o L

A=) 0)

This value coincides with d, only when » is even. Therefore
‘i 'y =25 + 1, the matrix (Q), is skew-symmztric. When » = 25,
the matrix (Q), must be symrﬁetric, otherwise a straighforward
computation will show that the subspace of D (f) ef elements in-
variant under * should have dimension :

and therefore B = (—1)" (?z)
»

+ B2 =

Let us determine now the space of invariant elemen's of F( 3
with respect to the anti-automorphism (A)* = (Q): (2)." (Q)7, : Let us remark that when an element ¢ € D (f) belongs to the
. group of invertible elements defining inner automorphisms of
C{Q) which induce on C'(Q) the automorphisms associated to
" -unitarian similitudes, ¢¢* is an element of K if n =27 + 1 and
CamEnj b o sl Qe —Baepnas 't h j=1,2, ..., ( ) k< g, .it belongs to the space over K generated by 1 and r, if n=2r
’ (cf. [9], p. 72 or [16], taking into account that (M : K) ——27»)

Since 7, belongs to the center of D{f) and for n = 2, 77 = 0",

where ¢,; is the mairix wit i int: i g - i :
SO frix with L in the intirsection 0[_ the j-th . ¢ r. 15 a direct sum of matrices each one equal to th: unit matrix
row and the j-th column and 0 elsewhere, form a basis ov.r K

of the space of elements invariant under the anti-nutomor-
phism *.
It (O.€K

where ((Q); = diag (al, Ay ey 1(”)), The(’_t)- clements
: z

or to its opposite. Therefore for any =,

(Ch () (OF (" == we (I,

o= 2 and (), = ding ('11- Ty ooy the

. x
¢ 8l
space of elements of K(") nvariant und. v the anti-automorphism - that is,

: (Ch (O (O = o ().

- ~ - - 7 ‘

* o S {177, has as bhasis the clements e,m,

What has been said for the components of the matrices ima-
- ges by o of the elements of the Clifford group mapped by into
space of elements of the spin representation of D (f) invariant s . unitarian transformations is also true for the components (C)
under the anti-antomorphism * has dimension : © of a matrix C image by s of an element of the group mentioned

ew + 7 e ot Therefore when (Q)y = diag (11, u:(”\}. the




128 S EVISTA MATRMATICA BISPANG-AMERICANA .

above. That is to:say, the (C), are unitarian similitudes of the

hermitian form‘_(Q)'[ defined on a vector space over I¥ if 2¢{f n;

for 24 = u (C), is a unitirian similitude of the hermitian form

(Q): defined on'a vector space over a sfield of quaternions if

,&'(C);E_RL:(”')‘,-'V'and,‘"if'(C)ivE K("), {C); is a similitude with res-
i)

r

pect to the quadrati¢ form (Q), if » =25 or a similitude with
respect to an alternate bilinear form if r = 25 + 1.

{ Continuard.)

CRONICA
I REUNION ANUAL DE MATEMATICOS ESPARQLES
- Durante fos dias 2 al 6 de octupre del presente aﬁé, ambos inclusive, tendra
Jugar en. los locales del Consejo Superior de Investigaciones Cieatificas de

Madrid, Serranc, 123, la I Reunidn Anual de Matematicos Espafioles.

Finalidad de Iz Reunion,

Con estas reuniones s¢ pretende:

1.2 Dar iugar a la exposicidn de los trabajos de investigacion de los Ma-
temriticos espafioles. ) '

20 Tistudiar temas relativos a la organizacién de lu investigacion en 1a
Matemética ¥ de su cnsefianza en los diversos’ grados.

89 TReorganizar la Real Sociedad Matematica Lspafiola.

Para cllo se celebrarin sesiones cientificas y sesiomes de discusién de temas
universitarios v didicticos. Las sesiones cicntificas tendran lugar en diversas

. Secciones, de ncuerdo con los trabajes presentados.

Presenlacidn de irabajos. .

Un resumen de los trabajos que se picnscy exponer en dicha Reunién
deberd llegar al Comité organizador de la Reunién, con anterioridad al dia
i de agosto, y ¢l trabajo completo con anterioridad al dia 10 de septiembre.

‘{.0s trabajos admitidos darin derecho a la permanencia de sus autores,
durante los dias gque dure lan Reunidn, en la Residencia de! Consejo Superior
de Tnvestigaciones Cientificas, y al abono de los hilletes de ferrocarril en 1.2
clase, ida y regrese, a sus respectivas localidades,

En una segunda comunicacién se dard cuenta de la Junta directiva de la
Reunién y de las diversas Secciones en que s¢ dividird la misma,~E! Comité
organizador, § .Rios v P. Abellanas.

SESINNES CIENTIFICAS TR INSTITUTO <JORGE JUAN»

Sesign cicntifica 13-V-G0.

D. José¢ Javier Etayo desarrolié el tema: Especializacion de los diferes-
ciales de. grado q de wiea variedad sobre una subvaricdad de dimensidn Q.




