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A Cartan matrix is an n X n matrix (4;;) with integer coefficients which
satisfies the conditions

(1) A4 = 2;1 =12 --,mn,
(i) Ay < 03f 4 5 j,
(i) As; = 0 if and only if A;, = 0.

We say that (4,;) has a null root if there exists a non-zero column vector
[d;] = [di,ds, -+, d,] such that (4;;)[d;] = 0, where each d; is a non-negative
integer. We call (A4,;) symmetrizable if there exists a non-singular diagonal
matrix D such that the product (4,;)D is a symmetric matrix.

Nowadays it is customary to represent Cartan matrices by diagrams which
are a slight modification of the diagrams introduced by Coxeter to classify
the discrete groups generated by reflections (see [3] or [5] chapter XI). Attached
to a Cartan matrix there exists a group generated by reflections called its Weyl
group. This is defined in Section 3 as well as the root system connected with it.
When the matrix is symmetrizable the Weyl group leaves invariant a non-
trivial quadratic form.

Cartan matrices are used in the construction of Lie algebras £(4;;) over
fields of characteristic 0; they generalize the matrices used by E. Cartan in
his thesis of 1894 to classify the finite dimensional simple Lie algebras over
the complex field. The result is that the algebra £(4.;) is simple if (4,;) is
indecomposable in the sense defined in Section 1, and has no null roots; and
it is finite dimensional if and only if it is one of the matrices obtained by Cartan.
Because of this, we refer to these matrices as the finite Cartan matrices. The
simplicity of £(4;;) was established by Moody in [7] for symmetrizable matrices
without null roots and in the general case by Kac in [6]. The extension of the
construction to any field is carried out in [1], where it is found that with minor
restrictions an the characteristic the result holds.
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The symmetrizable Cartan matrices with null roots are determined in [7]
using properties of £(A;;) and the classification of the finite Cartan matrices.
Kac simply lists their diagrams and refers to [3]. These diagrams are also in-
cluded in [8] and [2] in relation with Lie algebras, and in [4] they show up again
in connection with a different problem.

In the present paper, after introducing some notation, we determine in
Section 2 all the indecomposable Cartan matrices with null roots. It is seen
that the lists given by Moody and Kac are complete because all such matrices
are symmetrizable. In Section 3 we use the diagrams of the Cartan matrices
with null roots to determine in a new way the diagrams of the finite Cartan
matrices. To avoid the theory of Lie algebras, we define them as those Cartan
matrices with a finite root system. The paper is self-contained and we think
that our method, besides giving more information in the theory of Lie algebras,
is shorter and simpler than the known ones.

§1. Preliminaries. Diagrams with weighted arrows. We represent the
n X n Cartan matrix (4,;) by a diagram in the following way,

a) the diagram has n vertices,

b) for ¢ # j we draw |4,;| arrows from the vertex j to the vertex <. Kach
such arrow will be called a (j, ©)-arrow.

¢) To simplify the diagram, when |4,;] = |[4;:| = 1 we simply draw a line
from 7 to 5. If |4.;] > 1, but |[4;;] = 1, we omit the (7, j)-arrow. There is no
danger of confusion, because, if there are (j, 7)-arrows, then (iii) implies that
there is at least one (7, j)-arrow. If no such arrow appears in the diagram, it
means that there is just one, which has to be taken into acecount when we count
AITOWS.

1t is clear that the diagram determines the Cartan matrix up to a permutation
of the indices.

A Cartan matrix is called indecomposable if the corresponding diagram is
connected, z.e., {1, 2, --- , n} can not be split into two non-empty subsets
S and T such that A;; = 0ifie Sand je 7.

We attach a positive rational number a; to the vertex ¢ of the diagram for
2 =1,2, -+, n. Then we give the weight a;/a; to each (j, ©)-arrow.

Remark. Property iii) implies that if there is an arrow of weight z there
also exists an arrow of weight 1/x.

§2. Indecomposable Cartan matrices with null-roots. A null root is by
definition a non-negative solution of the homogeneous system of linear equations:

ZA.;,-x,'=O, ’i=1,2,---,n.
i=1

Because A;; = 2 and 4;; < 0,if [d, ,d,, --- , d,] is a null root we have
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2 14uld;=2d:, di=1,--- ,n.
i
Assume d; = 0, then the i-th equation becomes ;.; |4 d; = 0, which
implies that d;, = 0 if A;; = 0. Since the matrix is indecomposable we would
get dp = 0 for all k, which contradicts the definition of null root. Therefore
the coefficients of a null root are all positive and any two null roots are linearly
dependent. If we attach to the vertex < the number d; , the weight of an arrow
is independent of the chosen null root. Our problem is reduced to finding the
connected weighted diagrams which satisfy the condition: For each vertex <
the sum of the weights of all (j, ©)-arrows is equal to 2.
From the remark at the end of Section 1 it follows that,

(*) if w is the weight of an arrow, then 3 = w < 2.

Hence there are at most 4 arrows arriving at a vertex.
Now (*) implies that, if the condition holds, there are no weights with value
between £ and 2. Using the remark we see that

(**) there are no weights with values between % and %.

This, in turn, implies that there are no weights between § and $. Hence,
by the remark,

(***) there are no weights between 2 and £.

Our information about the weights shows that if there are 3 arrows arriving
at a vertex, the only ways in which the weights can add up to 2 are:

PHi+L b3+ s phitiand i A4S

Suppose now that there are 4 arrows arriving at a vertex. Then each weight
is ¥ and we get the following possibilities,

1 1
0 0
( ‘ i 2 1
01""02'—01 3 02<=01., O=)0<=0,
I I
0; 0;
(1) 0—0&0
T 2 1
@) 0&0.
2 1

If there are 3 arrows arriving at a vertex, suppose we are in case 2 =
+ 342 =%+ 4+ 3 we get the incomplete diagram

3

0

l
e 0—0—0 - - - .

4 8 5

3
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The vertex with a 3 has an arrow of weight 2, so it is already saturated.
As for the vertex with a 5 (4), there must be only one more arrow arriving at
it with weight ¢ (3). Hence we obtain

3
0
I

0—0—0—0—0 -

2 4 ] 3 4

Now the vertex with a 2 is already saturated but at the other end the vertex
with a 4 needs an arrow with weight 2. Proceeding in this way we arrive at

3) 0—0—

3

2
Let us take up now the expression 2 = 2 4 2 4 2, Starting with

0

l
eee 0—0—0 .-+
2 3 2
we obtain
01
l
0,
|
) 0—0—0—0—0.
1 2 3 2 1
But in this case we could also have
®) 0—0—0
1 2 3 2 1
and
6 0=0—0.
3 2 1
Similarly, from 2 = & 4+ 2 4 2 = £ + 2 4 2 we get
02
l
) 0—0—0—0—0—0—0

and
8) 0—0—0=0—0.
1 2 3 4 2
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Asfor 2 = 3 + 1 + 1 we start with

0,
either \O—O v+ or 0=0—0---.
/ 2 2 1 2 3
We can add a vertex and obtain

0,
N0—0—0 -+ or 0=0—0—0--- |
/z 2 2 1 2

2 2

The ways of completing such diagrams are,

1

0 0,
l
9) 0,—0 --- 0=0 with the special case 0,=0,
‘ 2 2 2 l 2
0 0,
1
(10) 0=0—0 --- 0=0 with the special case 0=0=0, or
1 2 2 2 2 1 2 2
01 Ol 01
| . , |
(11) 0,—0 --- 0—0, with the special case 0,—0,—0, ,
l 2 2 | l
0, 0, 0.
01 Ol
| l
12) 0=0—0 --- 0—0, with the special case 0=0,,
1 2 2 2 1
| I
01 01
as well as,
(13) 0=0—0 --- 00 with the special case 0=0=0.
1 2 2 2 1 1 2 1

All other diagrams will have at most 2 arrows arriving at a vertex. These are

as /

and

(15) 0<0—0 - -- 0==0
1 1 1
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with the special case
=
(16) 0..0.
1 1
Remark. 1If we allow infinitely many entries in our indecomposable Cartan
matrices, there can be no null roots since we only consider vectors with a finite

number of non-zero entries.

§3. Finite Cartan matrices. Let V, be a vector space over the rational field

@ with basis @y , @1, -+ , @, and V the subspace spanned by a; , @z, -+ , a, .
Given an n X n Cartan matrix we define linear transformations S; , 8%, 1 <
1 =< m, acting on V by ;8; = a; — A;je; and ;8% = a; — A, and in-

troduce a pairing
(-, )V XV->Q

defined on our basis by (a; , @;) = A;; . It is immediate that aS; = a — (@, a;)a;
and, a8* = a — (a; , @)a,, and it follows from this that S;, S* are reflections
on V. That is, 82 = id = S** and S, , S* fix a hyperplane of V pointwise. Let
W (respectively W*) denote the group generated by the elements S; (respectively
S*) for 1 £ 7 < n. W is called the Weyl group of (4.;) so that W* is the Weyl
group of the Cartan matrix (4,;)" where ¢ denotes transpose. Notice that
(aSx, 88E) = (a, B) for @, B ¢ V and hence by iteration (aS;, --- S,,,
BSE --- 8%) = (a,B8) forany @, BV, r = 1 and arbitrary indices ¢, , -++ , 4,
{17 T n}

Definition. Let (A4;;) be an n X n Cartan matrix and W its Weyl group.
The elements of the set

A={aw|lZi=n oW

are called the roots of (4,,), and A is called the root system of (4;;). We are
interested in those Cartan matrices for which A is finite, which we call finite
Cartan matrices.

Lemma 1. Let (A;;) be a finite Cartan matrix. Then it s non-singular and
symmetrizable with D = diag (&1, *+ - , €.), all ¢, > 0.

Proof. Let f(-, ):V X V — @ be any positive definite symmetric bilinear
form on V and define (- , -1V X V = Q by {a, 8) = D eew f(aw, Bw) for any
a, B¢ V. Here W denotes the Weyl group of (4;;), which is finite, since A is
finite and W can be faithfully represented as a group of permutations of A.
Clearly (- , -) is a positive definite symmetric bilinear form on V for which
{aw, Buw) = {a, B) for all @, Be V, we W. It follows from this, and the fact that
S, is a reflection on V, that aS; = a — 2({e, a;)/{a;, ax))a; for all e V. In
particular, taking @ = «; we obtain that 4,; = 2(a; , a:)/{a: , a,). Thus, setting
¢ = 1/{a; , a;), we have ¢; > 0 and A,;;e; = Aje; . Since ({a; , ;) is non-
singular it is clear that (4.;) is non-singular.
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Lemma 2. Let (A;;) be an indecomposable symmetrizable Cartan matrix
with D = diag (e, , -+ , &). Then

(@Si, -+ 8i, @) = (a; , ;8% --- S%) e
forany i, j, 4, - , e {1, c--, n}.
Proof. We use induction on r, the result being clear if r = 0 because
Aiiei/e; = (a; , ai)ei/e .
Next suppose the result is true up to and including r and set @ = o,S;, --- S;,,
o* = ;8% ... S* . We must show (aSx, a;) = (o, a*S%)e;/e.forl = K < n.

Now (aSx , @;) = (@ — (& adax, @) = (&, @;) — (@, ax)(ax , ;). By in-
duction and the case r = 0 this equals

€; € €; €;
Loy, a*) — Flax,a®) (@, ax) = 2 (@, @* — (ax , a*)ax)
€; €5 €x €;

1
e.
= ;" (o; , a*S%), as asserted.
1

We now take an n X n indecomposable finite Cartan matrix (4,;). If 0 # a =
Sn.. dia; £ V we define the level of o, denoted £(a), by £(a) = >ty d; . If
all d; = 0 we say that « is positive. Since the root system A is finite, for a
positive root § of maximal level we get £(68;) < £(8) for 1 = ¢ £ n. Fix a repre-
sentation of 3, say, 8 = a,S;, - -+ S;, , and define 6*e A*by 6* = o, S* .-+ 8* .
Because £(88;) = £(5), and 68; = 6§ — (5, a;)a; , we have (5, ;) = 0 for all j.
By Lemma 2, (a; , %) = (4, a;)e/e; ; hence (a; , 6%) = 0 and (a; , %) =0
if and only if (3, @;) = 0. Also, (8, 6*) = 2, which implies, in particular, that
not all (3, ;) are zero.

We now extend the pairing (+, -):V X V—Qtoapairing (-, -):Vo X Vo— Q
by defining

A, if 1=4,j<n,
2 if =0 =]
—(5,a;) if 7=

0
—(a, ) if 1<i<n,j=

(a,~ ’ ai) =

Letting B;; = (o, ;) we find from the above that (B;;) is an indecomposable
Cartan matrix. Moreover, 0 % a, + & = D o d;a; for some non-negative
d; £ @, by our choice of 6. Now (e, + 8, ;) = — (5, @;) + (3, @;) = 0forl £
1 = n,and (@ + 8, @) = 2 + (8, @) = 2 — (5, %) = 0, and hence

do 0
(B:) =1:
d, 0
Thus, (B;;) is an indecomposable Cartan matrix with a null root.
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By our construction of (B;;) we find that the diagram of (d4.;) is obtained
from that of (B,;) by removing a vertex for which the remaining diagram is
connected. Thus, by simply examining the sixteen diagrams obtained in Section

2 we find that (A4,;) can only correspond to one of the nine types of diagrams
listed below.

A, 0—0 -+ - 0—0, 1= 1,
B, 00—0--- 0—0, 122
¢, 0=0—0 --- 0—0, 1= 3,
0
l
D, 0—0 - 0—0, 124,

0

Ey 0—0—0—0—0,

0

|
E, 0—0—0—0—0—0,

0

i
E, 0—0—0—0—0—0—0,

F, 0—0=0—0
G, 0=0.

Remark. It is well known that all of these diagrams actually do correspond
to finite Cartan matrices (see [2] for instance). However, this is quite easy to
see directly using some elementary but ingenious results on matrices in [5].
Indeed let B = (B,;), 1 < 4, j £ £ be one of the nine types listed above. Then
sois A = B'. By adding a suitable node to 4 we can obtain a matrix 4 = (4.;),
0 < 4, j £ £ which is one of those found in Section 2. It has & null root [d] =
[do, -+, d.] (just read the d,’s off the diagram). Let D = diag {e), 1, - , €}
be a positive diagonal matrix such that AD is symmetric (choose ¢ > 0 arbi-
trarily and the other e; are uniquely determined). Let D = diag {e;, - -+ , e]}.
Now AD is a connected a-form in the sense of Coxeter [5] and AD (D7*[d]) = 0.
By [5] 10.33 and 10.24, AD is positive semi-definite and AD = (a,;) is positive

definite. Fach S¥,7 =1, ---, £ is easily seen to be an isometry relative to the
positive definite form f: f(e; , @;) = a;; . Thus A* = {a, , -+ , a.}W¥*is con-
tained in the bounded region {z: f(z, ) < max (@1, --- , @)} and also in the

lattice Za; + --- + Za, , whence A* is finite. Since A* is the root system of B,
B is a finite Cartan matrix.
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